
- •Содержание
- •1 Основные понятия теории механизмов и машин…. 5
- •5 Синтез механизмов…………………………………………….. 71
- •5.1 Лекция 11 …………………………………………………………….. 71
- •5.1.1 Общие методы синтеза механизмов………………………………. 71
- •1 Основные понятия теории механизмов и машин
- •1.1 Лекция
- •1.1.2 Машина
- •Основные понятия
- •Основные виды механизмов
- •2 Структурный анализ и синтез механизмов
- •2.1 Лекция 2
- •2.1.1 Определение числа степеней свободы кинематической цепи
- •2.1.2 Замена высших кинематических пар цепями с низшими парами
- •2.2 Лекция
- •2.2.1 Структурная классификация плоских механизмов
- •3.1 Лекция 4
- •3.1.1 Задачи кинематики
- •3.1.2 Графический метод кинематического исследования
- •3.1.3 Графическое дифференцирование. Графическое интегрирование
- •3.1.4 Графический метод как алгоритм решения задачи с помощью
- •3.2 Лекция 5
- •3.2.1 Метод планов скоростей и ускорений
- •3.2.2 Аналитический метод кинематического исследования
- •4 Динамика механизмов и машин
- •4.1 Лекция 6
- •4.1.1 Задачи динамики
- •4.1.2 Силовой расчет механизмов
- •4.1.3 Кинетостатика групп Ассура второго класса
- •4.1.4 Кинетостатика начального звена
- •4.2 Лекция 7
- •4.2.1 Определение уравновешивающей силы (момента) по методу
- •4.2.2 Учет трения в механизмах
- •4.2.3 Трение скольжения. Трение в поступательных кинематических
- •Из рисунка 20а:
- •4.2.4 Трение на наклонной плоскости
- •4.2.5 Учет формы направляющих, приведенный коэффициент трения
- •4.3 Лекция 8
- •4.3.1 Трение во вращательных парах
- •4.3.2 Трение в цапфах
- •4.3.3 Трение в пятах
- •4.3.4 Трение гибких тел
- •4.3.5 Трение качения
- •4.4 Лекция 9.
- •4.4.1 Энергетический баланс машины
- •4.4.2 Коэффициент полезного действия системы механизмов
- •4.4.3 Приведение сил и масс в механизмах. Уравнение движения
- •4.4.4 Уравновешивание сил инерции вращающихся звеньев
- •4.5 Лекция 10
- •4.5.1 Электро-, гидро-, пневмопривод механизмов
- •4.5.2 Выбор типа привода
- •5 Синтез механизмов
- •5.1 Лекция 11
- •5.1.1 Общие методы синтеза механизмов
- •5.1.2 Синтез механизмов с низшими кинематическими парами
- •5.1.3 Методы оптимизации в синтезе механизмов с применением
- •5.2 Лекция 12
- •5.2.1 Синтез зубчатых механизмов
- •5.2.2 Основной закон зацепления.
- •5.2.3 Кинематика зубчатых механизмов.
- •5.2.4 Эвольвентное зацепление
- •5.2.5 Методы изготовления зубчатых колес
- •5.3 Лекция 13
- •5.3.1 Размеры зубчатых колес, формируемые при нарезании
- •5.3.2 Геометрические показатели качества зацепления
- •5.4 Лекция 14
- •5.4.1 Кулачковые механизмы. Типы механизмов. Принципы
- •5.4.2 Динамический синтез кулачковых механизмов
- •5.4.3 Построение профиля кулачка
- •5.4.4 Силовое замыкание высшей кинематической пары
4.2.5 Учет формы направляющих, приведенный коэффициент трения
На силу трения в поступательной паре влияет также форма направляющих. В технике для обеспечения точности поступательного движения часто используются клинчатые направляющие (они удобны, т.к. автоматически устраняются боковые зазоры в поступательной паре). Рассмотрим ползун, изображенный на рисунке 23, который движется в направляющих, имеющих форму клина.
Рисунок 23
Из баланса сил, действующих на ползун, определяется результирующая нормальная реакция RN. Однако силы трения возникают на боковых поверхностях клина и зависят от нормальных реакций RN1 и RN2, перпендикулярных к этим боковым поверхностям. Результирующая нормальная реакция является геометрической суммой реакций RN1 и RN2:
,
а сила трения
Ff=Ff 1+Ff 2=RN1. f+ RN2. f.
Наиболее часто в технике используется симметричное расположение боковых поверхностей клинчатых направляющих. В этом случае:
RN1 = RN2 ; RN = RN1. sin+ RN2 . sin= 2 . RN1. sin 2 . RN1 = RN / sin
Ff = RN1. f + RN2. f = 2 . RN1. f = RN. f / sin
Как видно, в этом случае в значительной мере можно влиять на величину силы трения изменением угла между плоскостями направляющих (здесь – половина угла клина). Для дальнейших расчетов вводится понятие приведенного коэффициента трения (обозначается f ' ):
;
Ff
=RN.
f
'.
При уменьшении угла возрастает сила трения на боковых поверхностях клина при одной и той же результирующей нормальной реакции. При применении малых (близких к нулю) углов сила трения увеличивается до очень больших величин (при стремлении угла клина к нулю сила трения стремится к бесконечности). Именно это явление привело к появлению термина «заклинивание». Этот эффект широко используется в бытовой практике и в технике (например: соединение деревянных строительных конструкций с помощью клиньев; применение для рубки дров специального топора – «колуна» с увеличенным углом заточки для предотвращения застревания при колке дров; применение клиньев для удержания бурильной колонны; применение клиноременных передач для увеличения тяговой способности; в крепежных резьбах для предотвращения самоотвинчивания и др).
4.3 Лекция 8
4.3.1 Трение во вращательных парах
В конструкции вращательной пары (шарнира) можно выделить два вида соприкасающихся поверхностей (рисунок 24):
- цилиндрические поверхности вала и отверстия,
- торцовые поверхности соединенных звеньев.
Цилиндрическая опорная поверхность вала (воспринимающая радиальную нагрузку) называется цапфой. (Концевая цапфа называется шипом, цапфа, расположенная в середине вала называется шейкой). Цилиндрическая часть опоры, работающая с цапфой и воспринимающая радиальные нагрузки, называется подшипником (от слова шип – подшипник). Торцовая (плоская) часть вала, воспринимающая осевые нагрузки называется пятой. Часть опоры, работающая с пятой и воспринимающая осевые нагрузки, называется упорным подшипником («подпятником»).
Рисунок 24
При решении задачи об определении силы трения во вращательной паре рассматривается две гипотезы:
- по первой гипотезе удельное давление считается распределенным равномерно по опорной поверхности (q=const). Эта гипотеза справедлива для тихоходных валов и плохо прирабатывающихся поверхностей;
- по второй гипотезе расчет ведется с учетом износа поверхностей при работе пары. Она справедлива для быстроходных валов и хорошо прирабатывающихся поверхностей.