
- •Содержание
- •1 Основные понятия теории механизмов и машин…. 5
- •5 Синтез механизмов…………………………………………….. 71
- •5.1 Лекция 11 …………………………………………………………….. 71
- •5.1.1 Общие методы синтеза механизмов………………………………. 71
- •1 Основные понятия теории механизмов и машин
- •1.1 Лекция
- •1.1.2 Машина
- •Основные понятия
- •Основные виды механизмов
- •2 Структурный анализ и синтез механизмов
- •2.1 Лекция 2
- •2.1.1 Определение числа степеней свободы кинематической цепи
- •2.1.2 Замена высших кинематических пар цепями с низшими парами
- •2.2 Лекция
- •2.2.1 Структурная классификация плоских механизмов
- •3.1 Лекция 4
- •3.1.1 Задачи кинематики
- •3.1.2 Графический метод кинематического исследования
- •3.1.3 Графическое дифференцирование. Графическое интегрирование
- •3.1.4 Графический метод как алгоритм решения задачи с помощью
- •3.2 Лекция 5
- •3.2.1 Метод планов скоростей и ускорений
- •3.2.2 Аналитический метод кинематического исследования
- •4 Динамика механизмов и машин
- •4.1 Лекция 6
- •4.1.1 Задачи динамики
- •4.1.2 Силовой расчет механизмов
- •4.1.3 Кинетостатика групп Ассура второго класса
- •4.1.4 Кинетостатика начального звена
- •4.2 Лекция 7
- •4.2.1 Определение уравновешивающей силы (момента) по методу
- •4.2.2 Учет трения в механизмах
- •4.2.3 Трение скольжения. Трение в поступательных кинематических
- •Из рисунка 20а:
- •4.2.4 Трение на наклонной плоскости
- •4.2.5 Учет формы направляющих, приведенный коэффициент трения
- •4.3 Лекция 8
- •4.3.1 Трение во вращательных парах
- •4.3.2 Трение в цапфах
- •4.3.3 Трение в пятах
- •4.3.4 Трение гибких тел
- •4.3.5 Трение качения
- •4.4 Лекция 9.
- •4.4.1 Энергетический баланс машины
- •4.4.2 Коэффициент полезного действия системы механизмов
- •4.4.3 Приведение сил и масс в механизмах. Уравнение движения
- •4.4.4 Уравновешивание сил инерции вращающихся звеньев
- •4.5 Лекция 10
- •4.5.1 Электро-, гидро-, пневмопривод механизмов
- •4.5.2 Выбор типа привода
- •5 Синтез механизмов
- •5.1 Лекция 11
- •5.1.1 Общие методы синтеза механизмов
- •5.1.2 Синтез механизмов с низшими кинематическими парами
- •5.1.3 Методы оптимизации в синтезе механизмов с применением
- •5.2 Лекция 12
- •5.2.1 Синтез зубчатых механизмов
- •5.2.2 Основной закон зацепления.
- •5.2.3 Кинематика зубчатых механизмов.
- •5.2.4 Эвольвентное зацепление
- •5.2.5 Методы изготовления зубчатых колес
- •5.3 Лекция 13
- •5.3.1 Размеры зубчатых колес, формируемые при нарезании
- •5.3.2 Геометрические показатели качества зацепления
- •5.4 Лекция 14
- •5.4.1 Кулачковые механизмы. Типы механизмов. Принципы
- •5.4.2 Динамический синтез кулачковых механизмов
- •5.4.3 Построение профиля кулачка
- •5.4.4 Силовое замыкание высшей кинематической пары
4.2.2 Учет трения в механизмах
По физическим особенностям различают трение внутреннее и внешнее.
Внутреннее трение – это процессы, происходящие в твердых, жидких и газообразных телах при их деформации и приводящие к необратимому рассеянию механической энергии. Внутренне трение проявляется в затухании свободных колебаний.
Внешнее трение – это сопротивление относительному перемещению, возникающему между двумя телами в зонах соприкосновения поверхностей, то есть в кинематических парах. По кинематическому признаку различают: трение скольжения, возникающее при скольжении одного тела по поверхности другого, и трение качения, возникающее при качении одного тела по поверхности другого.
4.2.3 Трение скольжения. Трение в поступательных кинематических
парах
При определении сил трения используется известная из физики зависимость, показывающая, что сила трения пропорциональна нормальной реакции (закон Амонтона-Кулона). При этом коэффициент пропорциональности зависит от материалов, физического состояния соприкасающихся поверхностей и называется коэффициентом трения скольжения (коэффициент трения обозначается f и является справочным материалом).
Ff =RN. f
Геометрическая сумма нормальной реакции и силы трения представляет собой полную реакцию между соприкасающимися поверхностями. Угол между полной реакцией R и нормальной составляющей называется углом трения (обычно обозначается греческой буквой - рисунок 20 а, в некоторых случаях – ).
Из рисунка 20а:
tg=Ff /RN =RN. f/RN =f ,
то есть
f=tg, или =arctgf.
Таким образом, между коэффициентом трения и углом трения очень простая однозначная зависимость, которая позволяет в равной степени пользоваться обоими параметрами для характеристики сил трения и получать наиболее удобные зависимости при расчетах.
При движении тела по поверхности в разных направлениях полная реакция меняет свое положение, а ее геометрическое место представляет собой конус, который называется конусом трения (см. рисунок 20 б).
Заменим силы Q и F (рисунок 20 а) результирующей силой F ( рисунок 20 в). На расчетной схеме обычно все силы прикладывают в центр ползуна, рассматривая сходящуюся систему сил для упрощения задачи и пренебрегая незначительным расстоянием от поверхности до центра ползуна.
Тело будет двигаться вдоль поверхности, если движущая сила Fдв будет больше силы сопротивления (в данном случае силы трения) или, в крайнем случае, равна ей. Из рисунка 20 в:
Fдв= F . sinRN = Fприж= F . cosFf = RN. f = F . cos. f ,
у
словие
движения:
,
,
,
но
f=tg
, т.е.
или
.
Таким образом, тело будет двигаться вдоль поверхности в том случае, когда линия действия внешней результирующей силы, приложенной к этому телу, будет проходить вне конуса трения (ускоренное движение) или совпадать с его образующей (равномерное движение).
Если линия действия результирующей внешней силы проходит внутри конуса трения, то происходит самоторможение.
4.2.4 Трение на наклонной плоскости
В технике для выигрыша в силе часто используется наклонная плоскость. При этом снижается коэффициент полезного действия из-за наличия трения между поверхностями. Рассмотрим общий случай движения тела, нагруженного вертикальной силой Q, вверх по наклонной плоскости под действием силы F, направленной под углом к направлению движения. Угол наклона плоскости (рисунок 21).
Рисунок 21
Заменим силу трения и нормальную реакцию результирующей реакцией R. Тогда рассматриваемое тело находится под действием трех сходящихся сил : R, Q и F. Равномерное движение – это равновесное состояние, поэтому при равномерном движении векторная сумма этих сил равна нулю:
.
На рисунке 21 приведен векторный треугольник, построенный на основании этой векторной суммы. Из приведенного треугольника по теореме синусов легко определяется зависимость между силами Q и F:
Q/sin(900+ – =F/sin(+) или Q/cos(–)=F/sin(+).
Отсюда общее условие движения (не только равномерного) тела вверх по наклонной плоскости имеет следующий вид:
Интерес представляет частный случай, когда движущая сила направлена горизонтально (рисунок 22).
Рисунок 22
Этот случай описывает работу винтовой пары. Он получается подстановкой в общую формулу значения угла = . В результате условие движения тела вверх по наклонной плоскости под действием горизонтальной силы описывается следующим выражением:
.