
- •1. Комплексные числа: определение, алгебраическая форма записи, деление.
- •2. Геометрическая интерпретация комплексных чисел. Модуль комплексного числа. Комплексное сопряжение и его свойства.
- •3. Полярные координаты на плоскости. Тригонометрическая форма записи кч.
- •4. Свойства модуля и аргумента кч. Ф-лы Муавра.
- •6. Тригонометрические и гиперболические ф-ции комплексного аргумента.
- •7. Матрицы. Различные виды матриц.
- •8. Решение системы линейных алгебраических уравнений методом Гаусса.
- •9. Линейное пространство. Примеры линейных пространств.
- •10. Линейная зависимость и независимость векторов.
- •11. Размерность линейного пространства. Базис, координаты.
- •12. Определители второго порядка.
- •3.1.1. Определители второго порядка
- •13. Общее определение определителя. Определители третьего порядка.
- •16. Разложение определителя по строке (столбцу).
- •14. Общие свойства определителя.
- •15. Вычисления определителя методом Гаусса. Определитель диагональной и треугольной матриц.
- •18. Проекции геометрического вектора на ось и компонента на оси, их свойства.
- •19. Линейность скалярного произведения и его координатное представление. Угол между векторами.
- •20. Векторное произведение и его основные свойства.
- •21. Координатное представление векторного произведения.
- •23. Линейность векторного произведения.
- •22. Смешанное произведение векторов и его свойства.
- •24. Двойное векторное произведение.
- •25. Плоскость в пространстве (основные виды уравнений).
- •26. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •27. Уравнения прямой в пространстве.
- •28. Эллипс и его уравнение в полярных координатах.
- •29. Гипербола и её уравнение в полярных координатах.
- •30. Парабола и её уравнение в полярных координатах.
- •31. Преобразования координат на плоскости: сдвиг, отражение, поворот.
- •32. Приведение уравнения кривой 2-го порядка к каноническому виду.
- •33. Поверхности второго порядка: эллипсоид, гиперболоиды, конус.
- •34. Поверхности 2-го порядка: параболоиды, цилиндры.
- •35. Умножения матриц и его свойства.
- •36. Обратная матрица: определение и основные свойства.
- •37. Вычисление обратной матрицы с помощью алгебраических дополнений.
- •38. Матричные уравнения. Вычисление обратной матрицы методом Гаусса.
- •39. Линейное пространство многочленов. Определитель Вандермонда.
- •40. Деление многочленов. Теорема Безу.
- •41. Кратность корня многочлена: определение, нахождение через производные.
- •42. Основная теорема алгебры. Разложение многочлена на множители (в тч на вещественные).
- •43. Разложение рациональной дроби на простейшие.
- •44. Собственные числа и собственные вектора матрицы.
- •45. Собственные подпространства. Алгебраическая и геометрическая кратность собственного числа.
- •46. Преобразование подобия. Диагонализация матрицы.
4. Свойства модуля и аргумента кч. Ф-лы Муавра.
Св-ва модуля: Число |z|=(x^2+y^2)^(1/2) называется модулем числа z. Для вещественного числа модуль совпадает с его абсолютной величиной. Некоторые свойства модуля:
|z|>=0, причём |z|=0 тогда и только тогда, когда z=0; |z1+z2|<=|z1|+|z2| (неравенство треугольника); |a*z|=a*|z|, - эти три свойства вводят на комплексных числах структуру двумерного нормированного пространства над полем R;
|z1*z2|=|z1|*|z2|; |z1/z2|=|z1|/|z2|.
Угол f такой, что: cos(f)=x/|z| и sin(f)=y/|z|, называется аргументом z. Для комплексного нуля значение аргумента не определено, для ненулевого числа z аргумент определяется с точностью до 2Пk, где k - любое целое число. Из определения следует, что tg(f)=y/x.
Св-ва аргумента: аргумент произведения равен сумме аргументов, аргумент частного равен разности аргументов, арг(з)^н=н*арг(з), аргумент сопряжённого кч равен отрицательному аргументу кч.
Ф-ла Муавра: Формула Муавра для комплексных чисел z=r*(cos(f)+i*sin(f)), заданная в тригонометрической форме - формула (r(cos(f)+i*sin(f)))^n=r^n*(cos(nf)+i*sin(nf)) для любого n из Z. Аналогичная формула применима также и при вычислении корней n-ой степени из ненулевого комплексного числа
Отметим, что корни n-й степени из комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса (r)^(1/n) с центром в точке 0.
5. Ф-ла Эйлера. Показательная форма записи кч.
Ф-ла Эйлера: Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство: e^(ix)=cos(x)+i*sin(x), где e - основание натурального логарифма, i - мнимая единица.
Док-во: Доказательство формулы Эйлера достаточно тривиально. Разложим функцию e^(ix) в ряд Тейлора по степеням x. Получим: e^(ix)=1+ix/1!+(ix)^2/2!+(ix)^3/3!...=(1-x^2/2!+x^4/4!-x^6/6!+…)+i(x/1!-x^3/3!+x^5/5!-...)
Но (1-x^2/2!+x^4/4!-x^6/6!+…)=cos(x), (x/1!-x^3/3!+x^5/5!-...)=sin(x). Поэтому e^(ix)=cos(x)+i*sin(x).
Показательная и тригонометрические функции в области комплексных чисел связаны между собой формулой e^(ix)=cos(x)+i*sin(x), которая носит название формулы Эйлера. Обосновать ее можно с помощью теории степенных рядов. Эта теория будет изложена в курсе математического анализа. Пусть комплексное число z в тригонометрической форме имеет вид z=r*(cos(x)+i*sin(x)). На основании формулы Эйлера выражение в скобках можно заменить на показательное выражение. В результате получим z=r*e^(ix). Эта запись называется показательной формой комплексного числа. Так же, как и в тригонометрической форме, здесь r=|z|, x=arg(z).
6. Тригонометрические и гиперболические ф-ции комплексного аргумента.
Заменим в формуле Эйлера f на -f. Получим: e^(-if)=cos(-f)+i*sin(-f). С учетом свойств тригонометрических функций имеем: e^(-if)=cos(f)-i*sin(f).
Сложив последнюю формулу с формулой Эйлера, получим: e^(if)+e^(-if)=2cos(f).
7. Матрицы. Различные виды матриц.
Матрица
— математический объект, записываемый
в виде прямоугольной таблицы чисел (или
элементов кольца)
и допускающий алгебраические операции
(сложение, вычитание, умножение и др.)
между ним и другими подобными объектами.
Обычно матрицы представляются двумерными
(прямоугольными) таблицами. Иногда
рассматривают многомерные матрицы или
матрицы непрямоугольной формы. В данной
статье они рассматриваться не будут.У
каждого элемента матрицы есть 2 нижних
индекса (aij) — первый «i»
обозначает номер строки, в которой
находится элемент, а второй «j» —
номер столбца. Говорят «матрица
размерности
»,
подразумевая, что в матрице m строк
и n столбцов. В одной матрице всегда
,
Пусть aij — элементы матрицы A, а bij — элементы матрицы B.
Линейные операции:
Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен bij = λaij
Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен cij = aij + bij
Вычитание матриц A − B определяется аналогично сложению, это операция нахождения матрицы C, элементы которой cij = aij - bij
Сложение и вычитание допускается только для матриц одинакового размера.
Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть A + Θ = A
Все элементы нулевой матрицы равны нулю.
Нелинейные операции:
Умножение
матриц (обозначение: AB,
реже со знаком умножения
)
— есть операция вычисления матрицы C,
элементы которой равны сумме произведений
элементов в соответствующей строке
первого множителя и столбце второго.
В
первом множителе должно быть столько
же столбцов, сколько строк во втором.
Если матрица A имеет размерность
,
B —
,
то размерность их произведения AB = C есть
.
Возводить в степень можно только квадратные матрицы.
Транспонирование матрицы (обозначение: AT) — операция, при которой матрица отражается относительно главной диагонали, то есть
Если
A — матрица размера
,
то AT — матрица размера
[править] Свойства операций над матрицами
Ассоциативность сложения: A + (B + C) = (A + B) + C.
Коммутативность сложения: A + B = B + A.
Ассоциативность умножения: A(BC) = (AB)C.
Вообще
говоря, умножение матриц не коммутативно:
.
Используя это свойство, вводят коммутатор
матриц.
Дистрибутивность умножения относительно сложения:
A(B + C) = AB + AC;
(B + C)A = BA + CA.
С учётом упомянутых выше свойств, матрицы образуют кольцо относительно операций сложения и умножения.
Свойства операции транспонирования матриц:
(AT)T = A
(AB)T = BTAT
(A − 1)T = (AT) − 1, если обратная матрица A - 1 существует.