
- •Лекция № 1(2ч) Введение в промышленную экологию
- •1. Формирование техногенной среды. Ресурсный цикл (техногенный круговорот веществ).
- •2. Предмет и задачи промышленной экологии
- •3. Классификация отходов производства
- •4. Виды загрязнений и их воздействие на организм человека, а также на состояние окружающей среды
- •5. Механизмы регулирования воздействия на окружающую среду.
- •Лекция №3 (4ч). Промышленная и санитарная очистка газовоздушных выбросов
- •1. Естественный состав и основные виды техногенных загрязнений атмосферы (аэродисперсные системы, газы, пары).
- •2. Поступление загрязняющих веществ в атмосферу Мордовии
- •Основы газоочистки.
- •2. Пылеулавливающее оборудование.
- •Очистка газовоздушных выбросов.
- •Обезвреживание газовоздушных выбросов.
- •Лекция №4 (2ч). Обработка твердых отходов
- •1. Компостирование.
- •2. Твердофазная анаэробная ферментация.
- •3. Свалки и полигоны твердых бытовых отходов (тбо).
- •Лекция № 5 (2ч) Биоремедиация загрязненных почв и грунтов
- •1. Ремедиация загрязненных почв in situ.
- •2. Обработка удаленных почв и грунтов
- •2.Химический состав воды и его роль.
- •3. Основные источники загрязнения природных вод.
- •1.Характеристика сточных вод
- •2.Показатели загрязненности сточных вод.
- •3. Основные принципы водопотребления и водоотведения предприятий
- •4. Нормирование водопотребления и водоотведения предприятий
- •4. Основные пути сокращения водопотребления и водоотведения промышленных предприятий
- •1. Классификация методов очистки
- •Механическая(гидромеханическая очистка).
- •Лекция 9 (2ч). Химическая очистка сточных вод
- •1 Общая характеристика
- •2. Нейтрализация
- •Для определения высоты слоя, суточного расхода и соотношения между высотой и шириной фильтра пользуются специальными формулами.
- •2 Окисление:
- •3. Электрохимическое и радиационное окисление
- •1.Коагуляция. Физико-химическая природа коагуляции. Коагулянты и флокулянты. Технологическая схема коагуляционной очистки.
- •2. Сорбция. Физико-химическая природа сорбции. Сорбенты. Устройство и принцип действия сорбентов.
- •3. Флотация. Физико-химическая природа флотации. Устройство и принцип действия флотаторов.
- •4. Экстракция. Экстрагенты. Физико-химическая природа экстракции. Технологические схемы экстракционных установок очистки стоков.
- •5.Ионообменная очистка. Ионообменники. Физико-химическая природа ионного обмена. Технологическая схема ионообменной очистки.
- •6. Очистка сточных вод методами электродиализа, эвапорации, азеотропной ректификации, термоокисления, выпаривания, кристаллизации.
- •Лекция 11 (4ч). Биологическая аэробная очистка сточных вод. «Биологическая аэробная очистка сточных вод. Основные узлы и технологическая схема». (4ч).
- •2. Механизмы биологического окисления.
- •3. Влияние различных факторов на эффективность биологической аэробной очистки.
- •4. Основные узлы сооружений аэробной биологической очистки
- •Принципиальная схем очистных сооружений
- •Лекция 12. Биологическая анаэробная очистка сточных вод (6ч).
- •Стадии метанового брожения: гидролиз, кислотогенная, ацетогенная и метаногенная.
- •2.2. Стадия гидролиза
- •2.3. Кислотогенная стадия
- •2.4. Ацетогенная стадия
- •1.5. Метаногенная стадия
- •Влияние физико-химических параметров стоков на эффективность анаэробной и биологической очистки.
- •3.1. Фазовый и химический состав загрязнений
- •3.2. Концентрация загрязнений
- •3.3. РН и буферные свойства сточных вод
- •3.4. Температурный режим
- •3.5 Биогенные элементы
- •3.6. Ингибиторы и токсичные вещества
- •3.7. Другие факторы
- •К онтактный реактор
- •4.2. Реакторы с прикрепленной биомассой
- •Лекция 13 (2ч). Методы обеззараживания и опреснения воды.
- •1.Обеззараживание воды.
- •2.Опреснение воды.
- •1.Обеззараживание воды.
- •2.Опреснение воды.
1.5. Метаногенная стадия
Сложный процесс распада ОВ в анаэробных условиях завершают метанобразующие бактерии или метаногены. Они являются облигатными анаэробами, чувствительными к кислороду. Окислительно-восстановительный потенциал среды их роста составляет — 330 мВ и ниже. Среди метанобразующих организмов встречаются психрофильные, мезофильные и термофильные виды. Описаны также галофильные метановые бактерии, обитающие в осадках соленых водоемов. Для обеспечения жизнедеятельности чистых культур метаногенов в первую очередь необходим строжайший анаэробиоз и нейтральная или слабощелочная реакция среды.
Среди них наиболее важным является ацетат, из которого при разложении сложных ОВ образуется более 70% метана (рис. 1). Помимо указанных выше восьми источников углерода никакие другие его соединения не поддерживают рост метанобразующих бактерий, правда имеется сообщение об образование метана из метильных групп многоуглеродных спиртов.
Метаногенные бактерии 90—95% используемого углерода превращают в метан, чтобы за счет сопряженного образования трансмембранного потенциала аккумулировать необходимую для конструктивного обмена энергию, и лишь 5—10% углерода превращается в биомассу. Благодаря указанной особенности до 80—90% ОВ, разлагающегося в процессе развития метаногенного консорциума, превращаются в газ.
По типу использования субстратов все виды метанобразующих организмов могут быть условно разделены на 3 подгруппы (рис. 2). Следует отметить, что здесь мы не рассматриваем группу галофильных метаногенов. Бактерии первой подгруппы используют Н2+СО2, к ним относится большинство метановых бактерий, некоторые из них способны также использовать формиат.
Вторая подгруппа представлена ацетатиспользующими метаногенами. Осуществлять реакцию способны представители только двух родов Methanosarcina и Methanothrix, причем для последних ацетат является единственным субстратом роста, к которому они обладают очень высоким сродством. В настоящее время описано три вида метанотриксов: два мезофильных М. soehngenii и М. concilii и один термофильный М.thermoacetophila. Так как при реакции выигрыш свободной энергии Гиббса относительно невелик, то скорость роста бактерий второй подгруппы достаточно низка — время генерации исчисляется сутками. Метанотриксы являются определяющей группой бактерий при очистке сточных вод, они способны использовать ацетат в очень низких концентрациях (до7мкМ) и обеспечивают глубокую очистку стока. |
К третьей подгруппе могут быть отнесены метаносарцины, способные утилизировать все известные к настоящему времени метаногенные субстраты, за исключением формиата. Наиболее предпочтительным субстратом для них является метанол, наименее — ацетат, сродство к которому у них на порядок ниже, чем у метанотриксов. К настоящему времени описано несколько видов метаносарцин, в том, числе термофильная М. thermophila, не использующая водород.
Приведенные в таблице 2 реакции на биохимическом уровне реализуются с помощью исключительно специфичных только для метаногенов метаболических путей при участии уникальных метаногенных кофакторов, таких как метаноптерин, фактор F420, фактор F430, кофермент М и др. На наличии этих соединений и основан достаточно простой метод определения водородиспользующих метаногенов в смешанных культурах с помощью флуоресцентной микроскопии: они дают либо зеленую флуоресценцию за счет фактора F420 или голубую флуоресценцию за счет 7-метилптерина.
Метанобразующие бактерии представлены видами с раз ной морфологией. Среди них имеются округлые, ланцето видные, палочковидные, спиральные, нитевидные и другие формы. Все метанобразующие бактерии имеют клеточные стенки. Но в отличие от большинства других бактерий в нее не входит муреиновая кислота и аминокислоты в D-форме. У части видов, например, Methanococcus vannieli стенка образована белковыми субъединицами, у других, в том числе Methanobacterium thermoautotrophicum, содержит особый пептидглюкан, называемый еще псевдомуреином. В зависимости от состава клеточной стенки метанобразующие бактерии могут окрашиваться как грамположительные или граммотрицательные бактерии. Особое строение клеточных стенок обуславливает устойчивость метановых бактерий кантибиотикам, которая варьирует у разных видов. Другое отличие метанобразующих бактерий от остальных бактерий проявляется в том, что их клеточные мембраны содержат глицериновые эфиры полиизопреноидов.