Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика вопросы и ответы.docx
Скачиваний:
1
Добавлен:
24.12.2019
Размер:
453.95 Кб
Скачать

3.Определение касательной к графику функции. Вывод уравнения касательной к графику функции.

Касательной прямой к графику функции f в точке x0 называется график линейной функции, задаваемой уравнением

Рассмотрим кривую, уравнение которой есть y=f(x). Возьмем на этой кривой точку M(x0, y0), и составим уравнение касательной к данной кривой в точке M, предполагая, что эта касательная не п араллельна оси Oy.

Уравнение прямой с угловым коэффициентом в общем виде есть у=kx + b. Поскольку для касательной k= f'(x0), то получаем уравнение y= f'(x0x + b. Параметр b найдем из условия, что касательная проходит через точку M(x0, y0). Поэтому ее координаты должны удовлетворять уравнению касательной: y0= f'(x0)·x0 + b. Отсюда b=y0f'(x0x0.

Таким образом, получаем уравнение касательной y= f'(x0x +y0f'(x0x0 или

y = f '(x0)·(xx0) + f(x0)

4.Теорема о непрерывности дифференцируемой функции.

Функция y=f(x) называется дифференцируемой в некоторой точке x0, если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.

Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что она дифференцируема на отрезке [а; b] или соответственно в интервале (а; b).

Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.

Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна.

Таким образом, из дифференцируемости функции следует ее непрерывность.

Доказательство. Если , то ,

где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx→0. Но тогда

Δy=f '(x0) Δx+αΔx=> Δy→0 при Δx→0, т.е f(x) – f(x0)→0 при xx0, а это и означает, что функция f(x) непрерывна в точке x0. Что и требовалось доказать.

Таким образом, в точках разрыва функция не может иметь производной.

5.Производная суммы, произведения, частного двух функций

Пусть u=u(x), v=v(x) – две дифференцируемые функции от переменной x.

  1. .

  2. (справедлива для любого конечного числа слагаемых).

  3. .

  4. .

а) .

б) .

Доказательство формулы 3.

Пусть y = u(x) + v(x). Для значения аргумента xx имеем y(xx)=u(xx) + v(xx).

Тогда

Δy=y(xx) – y(x) = u(xx) + v(xx)u(x)v(x) = Δuv.

Следовательно,

.

  1. Понятие сложной функции. Правило вычисления производной сложной функции.

Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u=u(x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y= f(u).

Теорема. Если функция u= u(x) имеет в некоторой точке x0 производную , а функция y= f(u) имеет в точке u0 производную y 'u= f '(u0), то сложная функция y = f(u(x)) в указанной точке x0 тоже имеет производную, которая равна y 'x= f '(u0u '(x0), где вместо u должно быть подставлено выражение u= u(x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f, рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y 'x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем y 'x= y 'u·u 'x . Применяя эту же теорему для u 'x получаем , т.е.

y 'x = f 'u (uu 'v (vv 'x (x).