
- •Родионов в.И.
- •Конспект лекций
- •«Электрический привод»
- •Содержание
- •Лекция 1
- •Функциональная схема автоматизированного электропривода
- •Типы электроприводов
- •Лекция 2 Механическая часть силового канала электропривода
- •Кинематическая схема электрического привода
- •Нагрузки к валу электродвигателя
- •Приведение моментов инерции нагрузки к валу двигателя
- •Лекция 3 Механические характеристики производственных механизмов и электрических двигателей
- •Механические характеристики механизмов
- •Механические характеристики электродвигателей
- •Лекция 4 Уравнения движения электропривода
- •Время ускорения и замедления привода
- •Определение оптимального передаточного отношения редуктора
- •Лекция 5 Механические характеристики электропривода постоянного тока с двигателем независимого возбуждения
- •Механические характеристики двигателя последовательного возбуждения
- •Механические характеристики двигателя смешанного возбуждения
- •Лекция 6 Тормозные режимы двигателей постоянного тока независимого возбуждения
- •Тормозные режимы двигателя последовательного возбуждения
- •Тормозные режимы двигателя смешанного возбуждения
- •Лекция 7 Механические характеристики асинхронного электропривода
- •Механическая и угловая характеристики синхронного электропривода
- •Лекция 8 переходные режимы в электроприводах
- •Пуск двигателя постоянного тока независимого возбуждения до основной угловой скорости
- •Ударное приложение нагрузки
- •Лекция 9 способы регулирования угловой скорости. Регулирование угловой скорости электропривода постоянного тока с двигателем независимого возбуждения
- •1. Рассказать о регулировании угловой скорости изменением
- •Регулирование угловой скорости изменением магнитного потока
- •Лекция 10 реостатное и импульсное параметрическое регулирование
- •Лекция 11 регулирование изменением напряжения на якоре
- •1. Регулирование изменением напряжения на якоре.
- •2. Система «генератор-двигатель».
- •Система «генератор-двигатель»
- •16.1. Механические характеристики двигателя постоянного тока независимого возбуждения при различных напряжениях.
- •16.2. Принципиальная схема включения двигателя постоянного тока независимого возбуждения по системе г-д.
- •Управляемые выпрямители
- •Лекция 12 Широтно-импульсные преобразователи и шУнтирование якоря
- •Регулирование угловой скорости двигателя постоянного тока независимого возбуждения шунтированиЕм якоря
- •18.3. Механическая характеристика двигателя постоянного тока независимого возбуждения при шунтировании обмотки якоря
- •18.4. Семейство механических характеристик при неизменном сопротивлении шунтирующего резистора и различных сопротивлениях последовательного резистора
- •Лекция 13 Регулирование угловой скорости двигателя постоянного тока последовательного возбуждения
- •Регулирование угловой скорости двигателя постоянного тока последовательного возбуждения шунтированием обмотки якоря или обмотки возбуждения
- •Лекция 14 Выбор электродвигателЯ
- •Нагревание и охлаждение электродвигателя
- •Выбор мощности электродвигателя для продолжительного режима
- •Лекция 15 Выбор электродвигателЯ для кратковременного и повторно-кратковременного режима
- •Выбор мощности электродвигателя для кратковременного режима
- •Выбор мощности электродвигателя для повторно-кратковременного режима
- •Дополнительная литература
Лекция 11 регулирование изменением напряжения на якоре
План лекции:
1. Регулирование изменением напряжения на якоре.
2. Система «генератор-двигатель».
Регулирование угловой скорости изменением напряжения на якоре осуществляется вниз от основной характеристики, так как напряжение, прикладываемое к якорю, в большинстве случаев может изменяться только вниз от номинального (иногда, например, при регулировании угловой скорости двигателя с постоянными магнитами возможно регулирование как вниз, так и вверх).
Допустимый момент без учета ухудшений условий вентиляции со снижением угловой скорости остается постоянным, так как допустимый ток якоря равен номинальному, а поток при независимом возбуждении остается номинальным.
Для различных значений напряжений угловая скорость двигателя равна:
Их отношение равно
(16.1)
Отсюда следует, что при изменении напряжения регулировочные характеристики располагаются параллельно друг другу, т.е. имеют одинаковую жесткость (как показано на рис. 16.1), что определяет относительно высокую стабильность угловой скорости. Диапазон регулирования
(16.2)
где Uном и Umin — номинальное и минимальное напряжения.
Из (16.2) следует, что относительный перепад угловой скорости растет со снижением напряжения; это ограничивает диапазон регулирования значением D = (8÷10) : 1 в системах привода без обратных связей (в замкнутых системах диапазон регулирования существенно больше и может достигать значений 1000:1 и более).
Плавность регулирования
определяется плавностью изменения
напряжения питания и обычно характеризуется
значением коэффициента плавности
.
Коэффициент полезного действия двигателя в данном случае (без учета потерь на возбуждение) равен отношению фактической угловой скорости двигателя к угловой скорости идеального холостого хода на заданной характеристике. Потери мощности в якорной цепи при постоянном моменте нагрузки остаются неизменными при регулировании угловой скорости и равными потерям при работе на естественной характеристике. Но поскольку полезная мощность по мере снижения угловой скорости уменьшается, то и КПД двигателя падает. Вследствие малых потерь мощности в цепи якоря этот способ регулирования скорости является экономичным. Однако для полной оценки экономичности необходимо учитывать потери мощности еще в устройстве, посредством которого регулируется напряжение на якоре двигателя, и затраты на это устройство.
Так как напряжение питающей сети поддерживается постоянным, то указанный способ регулирования возможен при использовании соответствующего преобразователя с регулируемым напряжением постоянного тока на его выходе, например, в системе генератор — двигатель (Г—Д) или управляемый выпрямитель — двигатель (УВ – Д).
Система «генератор-двигатель»
Принципиальная схема включения двигателя постоянного тока с независимым возбуждением по системе Г—Д приведена на рис. 16.2. Здесь генератор G с постоянной угловой скоростью приводится во вращение асинхронным или синхронным двигателем Ml; питание цепей возбуждения генератора G и исполнительного двигателя М осуществляется от независимого источника постоянного тока.