
- •Задачи интеллектуального анализа: кластеризация
- •Распределенные вычисления на примере cloud-based по на примере prezi.Com
- •Условия использования сервиса Prezi.Com
- •Технология Redis
- •Программное обеспечение интеллектуального анализа: Система statistica Data Miner
- •Программное обеспечение интеллектуального анализа: Oracle Data Mining
- •Понятие «Data mining», Data mining и базы данных.
- •Архитектура odm
- •Функциональные возможности odm.
- •Технология BigTable (Google)
- •MapReduce: модель и реализации.
- •2. Реализация в распределенной среде.
- •3. Расширенные средства.
- •«Методы Data Mining: ассоциативные правила»
- •1. Определение. Основные понятия
- •2. Типы ассоциативных правил
- •3. Алгоритм apriori
- •4. Применение
- •«Методология Data Mining: crisp-dm»
- •Понимание бизнеса (Business Understanding)
- •Понимание данных (Data Understanding)
- •Подготовка данных (Data Preparation)
- •Моделирование (Modeling)
- •Оценка (Evaluation)
- •Развертывание (Deployment)
- •Большие данные
- •История
- •Методики анализа больших данных
- •Почему данные стали большими
- •Аналитический инструментарий
- •Как справиться с большими данными?
- •Кому выгодны большие данные
- •Проблема больших данных в различных отраслях
- •Информационной экономике нужны миллионы ит-сотрудников
- •10, Спрос на администраторов Big data
- •Стадии интеллектуального анализа: задача консолидации
- •Основные этапы консолидации данных
- •Источники данных
- •Обобщенная схема процесса консолидации
- •Вероятностный вывод
- •Методы интеллектуального анализа : эволюционное программирование и генетические алгоритмы
- •Применение генетических алгоритмов
- •Примеры программного обеспечения
- •Методы интеллектуального анализа: деревья решений
- •Документно-ориентированная система управления базами данных CouchDb
- •Ftp Сервер
- •Методы интеллектуального анализа: иерархические модели кластерного анализа
- •Документно-ориентированная система управления базами данных MongoDb
- •2.Понятие о документно-ориентированной системе управления базами данных MongoDb
- •3. Возможности
- •4.История разработки
- •5. Использование MongoDb
- •6.Оценка производительности
- •7.Безопасность
- •8. Соответствие между sql и MongoDb
- •Простые запросы на выборку
- •Запросы на выборку с регулярными выражениями
- •Запросы на выборку с группировками
- •Запросы на выборку с объединением таблиц
- •Информация о запросе
- •Создание, изменение и удаление документов
- •Бизнес-анализ
- •Часть 1. Понятие «бизнес-анализ»
- •Часть 2. Разделы науки бизнес-анализа
- •Часть 3. Техники бизнес-анализа
- •Часть 4.Система бизнес-анализа и поддержки принятия решений
- •Часть 5. Методы бизнес-анализа
- •6. Роли бизнес-аналитиков
- •7. Цели бизнес-аналитиков
- •8.Выдержки из должностной инструкции бизнес-аналитика
- •9.Будущее бизнес-аналитики
- •Иску́сственные нейро́нные се́ти
- •Систе́ма подде́ржки приня́тия реше́ний
- •1. Сппр- хранилище данных
- •2. Аналитические системы
- •Субд Cassandra
- •Хранилища данных и средства их построения Data Warehousing
- •Программное обеспечение интеллектуального анализа: statistica
- •Бурение и расслоение
- •Классификатор
- •Разведчик многомерных моделей
- •Нейросетевой разведчик
- •Рабочее пространство statistica Data Miner состоит из четырех основных частей:
- •Автоматизация любых процедур с помощью statistica Visual Basic;
- •Распределенные базы данных
- •Определение рбд (определение Дейта)
- •Основные характеристики.
- •Основные принципы.
- •Типы распределённых баз данных.
- •Технологии распределенной обработки информации
- •Проблемы и особенности рбд.
- •Программное обеспечения для интеллектуального анализа данных: kxen
Основные принципы.
РБД состоит из набора узлов, связанных коммуникационной сетью, в которой:
каждый узел — это полноценная СУБД сама по себе;
узлы взаимодействуют между собой таким образом, что пользователь любого из них может получить доступ к любым данным в сети так, как будто они находятся на его собственном узле.
Каждый узел сам по себе является системой базы данных. Любой пользователь может выполнить операции над данными на своём локальном узле точно так же, как если бы этот узел вовсе не входил в распределённую систему. Распределённую систему баз данных можно рассматривать как партнёрство между отдельными локальными СУБД на отдельных локальных узлах.
Фундаментальный принцип создания распределённых баз данных («правило 0»): Для пользователя распределённая система должна выглядеть так же, как нераспределённая система.
Фундаментальный принцип имеет следствием определённые дополнительные правила или цели. Таких целей всего двенадцать(были выдвинуты в 1987 году):
1.Локальная автономия (local autonomy)
2.Независимость узлов (no reliance on central site)
3.Непрерывные операции (continuous operation)
4.Прозрачность расположения (location independence)
5.Прозрачная фрагментация (fragmentation independence)
6.Прозрачное тиражирование (replication independence)
7.Обработка распределенных запросов (distributed query processing)
8.Обработка распределенных транзакций (distributed transaction processing)
9.Независимость от оборудования (hardware independence)
10.Независимость от операционных систем (operationg system independence)
11.Прозрачность сети (network independence)
12.Независимость от баз данных (database independence)
Локальная автономия
Узлы в распределённой системе должны быть независимы, или автономны. Локальная независимость означает, что все операции на узле контролируются этим узлом.
Независимость от центрального узла
Локальная независимость предполагает, что все узлы в распределённой системе должны рассматриваться как равные. Поэтому не должно быть никаких обращений к «центральному» или «главному» узлу с целью получения некоторого централизованного сервиса.
Непрерывные операции
Это качество можно трактовать как возможность непрерывного доступа к данным (известное "24 часа в сутки, семь дней в неделю") в рамках DDB вне зависимости от их расположения и вне зависимости от операций, выполняемых на локальных узлах. Это качество можно выразить лозунгом "данные доступны всегда, а операции над ними выполняются непрерывно".
Прозрачность расположения
Это свойство означает полную прозрачность расположения данных. Пользователь, обращающийся к DDB, ничего не должен знать о реальном, физическом размещении данных в узлах информационной системы. Все операции над данными выполняются без учета их местонахождения. Транспортировка запросов к базам данных осуществляется встроенными системными средствами.
Прозрачная фрагментация
Система поддерживает независимость от фрагментации, если данная переменная-отношение может быть разделена на части или фрагменты при организации её физического хранения. В этом случае данные могут храниться в том месте, где они чаще всего используются, что позволяет достичь локализации большинства операций и уменьшения сетевого трафика.
Прозрачность тиражирования
Тиражирование данных - это асинхронный (в общем случае) процесс переноса изменений объектов исходной базы данных в базы, расположенные на других узлах распределенной системы. В данном контексте прозрачность тиражирования означает возможность переноса изменений между базами данных средствами, невидимыми пользователю распределенной системы. Данное свойство означает, что тиражирование возможно и достигается внутрисистемными средствами.
Обработка распределенных запросов
Суть в том, что для запроса может потребоваться обращение к нескольким узлам. В такой системе может быть много возможных способов пересылки данных, позволяющих выполнить рассматриваемый запрос.
Обработка распределенных транзакций
Это качество DDB можно трактовать как возможность выполнения операций обновления распределенной базы данных (INSERT, UPDATE, DELETE), не разрушающее целостность и согласованность данных. Эта цель достигается применением двухфазового или двухфазного протокола фиксации транзакций (two-phase commit protocol), ставшего фактическим стандартом обработки распределенных транзакций. Его применение гарантирует согласованное изменение данных на нескольких узлах в рамках распределенной (или, как ее еще называют, глобальной) транзакции.
Независимость от оборудования
Это свойство означает, что в качестве узлов распределенной системы могут выступать компьютеры любых моделей и производителей - от мэйнфреймов до "персоналок". Желательно иметь возможность запускать одну и ту же СУБД на различных аппаратных платформах и, более того, добиться, чтобы различные машины участвовали в работе распределённой системы как равноправные партнёры.
Независимость от операционных систем
Это качество вытекает из предыдущего и означает многообразие операционных систем, управляющих узлами распределенной системы.
Прозрачность сети
Возможность поддерживать много принципиально различных узлов, отличающихся оборудованием и операционными системами, а также ряд типов различных коммуникационных сетей. Данное качество формулируется максимально широко - в распределенной системе возможны любые сетевые протоколы.
Независимость от баз данных
Это качество означает, что в распределенной системе могут мирно сосуществовать СУБД различных производителей, и возможны операции поиска и обновления в базах данных различных моделей и форматов.
Исходя из определения Дэйта, можно рассматривать DDB как слабосвязанную сетевую структуру, узлы которой представляют собой локальные базы данных. Локальные базы данных автономны, независимы и самоопределены; доступ к ним обеспечиваются СУБД, в общем случае от различных поставщиков. Связи между узлами - это потоки тиражируемых данных. Топология DDB варьируется в широком диапазоне - возможны варианты иерархии, структур типа "звезда" и т.д. В целом топология DDB определяется географией информационной системы и направленностью потоков тиражирования данных.