
- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
Метод Остроградського інтегрування дробово-раціональної функції.
ОСТРОГРАДСКОГО МЕТОД
-
метод выделения алгебраич. части у
неопределенных интегралов от рациональных
функции. Пусть Р(х).и Q(х).-
многочлены с действительными
коэффициентами, причем степень Р(х).меньше
степени Q(х).и,
следовательно,
-правильная
дробь,
ai, pj,
qj - действительные
числа,
и
bi-
- натуральные числа, i=l,
2, ..., r,
j=1,
2, ..., s,
Тогда существуют такие действительные многочлены Р 1 (х).п Р 2 (Х), степени к-рых меньше соответственно чем степени п 1 и n2=r+2s многочленов Q1(x).и Q2(x), что
Важным является то обстоятельство, что многочлены Q1(x) н Q2(x).можно найти без знания разложения (1) многочлена Q(x).на неприводимые множители: многочлен Q1(x).является наибольшим общим делителем многочлена Q(х).и его производной Q' (х).и может быть получен с помощью алгоритма Евклида, a Q2(x)=Q(x)/Q1(x). Коэффициенты многочленов P1(x).и Р 2 (х).можно вычислить с помощью неопределенных коэффициентов метода. О. м. сводит, в частности, задачу интегрирования правильной рациональной дроби к задаче интегрирования правильной рациональной дроби, знаменатель к-рой имеет, простые корни; интеграл от такой функции выражается через трансцендентные функции: логарифмы и арктангенсы. Следовательно, рациональная дробь
в
формуле (3) является алгебраич. частью
неопределенного интеграла
Обчислення інтегралу .
Интегралы
типа
где
а, b,
с, d
- действительные числа, ,,...,, - натуральные
числа, сводятся к интегралам от
рациональной функции путем подстановки
где
К - наименьшее общee
кратное знаменателей дробей
Действительно,
из подстановки
следует,
что
и
т.
е. х и dx
выражаются через рациональные функции
от t.
При этом и каждая степень дроби
выражается
через рациональную функцию от t.
Інтегрування диференціального біному.
Интегрирование дифференциального бинома
Интегралы
типа(называемые интегралами от
дифференциального бинома),
где
а, b - действительные числа; m, n, р -
рациональные числа, берутся, как показал
Чебишев П.А., лишь в случае, когда хотя
бы одно из чисел р, (m+1)/n или (m+1)/n+р
является целым.
Рационализация интеграла в этих случаях осуществляется следующими подстановками:
1) если р - целое число, то подстановка х=tk, где k - наименьшее общее кратное знаменателей дробей m и n;
2)
если (m+1)/n - целое число, то
подстановка
где
s —знаменатель дроби р;
3)
если (m+1)/n+р - целое число, то
подстановка
где
s - знаменатель дpоби р.
Во
всех остальных случаях интегралы типане
выражаются через известные элементарные
функции,
т.
е. «не берутся».
Очислення інтегралу .
,
где p и q –
действительные коэффициенты.
В
этом случае выделяем полный квадрат
под знаком корня:
и
используем формулу из таблицы
неопределенных интегралов
.
То
есть,
Очислення інтегралу .
Вычисление
неопределенных интегралов типа
сводится
к вычислению интегралов от paциoнaльнoй
фyнкции подстановкой
,
которая называется универсальной.
Действительно,
,
Поэтому
где R1(t) - рациональная функция от t. Обычно этот способ весьма громоздкий, зато он всегда приводит к результату.
На практике применяют и другие, более простые подстановки, в зависимости от свойств (и вида) подынтегральной фyнкции. В частнocти, удобны следующие правила:
1) если функция R(sinx;cos x) нечетна относительно sinx, т.е. R(— sinx;cos x)=— R(sin x;cos x), то подстановка cosx=t рационализирует интеграл;
2) если функция R(sinx;cos x) нечетна относительно cosx, т.е. R(sinx; - cosx)=—R(sinx;cosx), то делается подстановка sinx=t;
3)
если функция R(sin x; cos x) четна
относительно sinx и
cosx R(— sin x; - cos x)=R(sin x; cos x), то
интеграл рационализируется
подстановкой tgx=t. Такая же подстановка
применяется, если интеграл имеет вид