- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
Друга теорема Лопіталя та наслідок знеї.
Пусть функции ƒ(х) и φ(х) непрерывны и дифференцируемы в окрестности точки х0 (кроме, может быть, точки х0). в этой окрестности
φ'(х)¹ 0. Если существует предел
Пусть, для начала, предел отношения производных конечен и равен A. Тогда, при стремлении x к a справа, это отношение можно записать как A + α, где α — O(1). Запишем это условие:
.
Зафиксируем
t
из отрезка
и применим теорему Коши ко всем x
из отрезка
:
,
что можно привести к следующему виду:
Для
x,
достаточно близких к a,
выражение имеет смысл; предел первого
множителя правой части равен единице
(так как f(t)
и g(t)
— константы, а f(x)
и g(x)
стремятся к бесконечности). Значит, этот
множитель равен 1 + β,
где β
— бесконечно малая функция при стремлении
x
к a
справа. Выпишем определение этого факта,
используя то же значение
, что и в определении для α:
.
Получили,
что отношение функций представимо в
виде (1 + β)(A
+ α),
и . По любому данному
можно найти такое
, чтобы модуль разности отношения функций
и A
был меньше
, значит, предел отношения функций
действительно равен A.
Если же предел A бесконечен (допустим, он равен плюс бесконечности), то
В
определении β
будем брать
;
первый множитель правой части будет
больше 1/2 при x,
достаточно близких к a,
а тогда
.
Для других баз доказательства аналогичны приведённым.
Дослідження функції на випуклість.
График дифференцируемой функции у=ƒ(х) называется выпуклым вниз на интервале (а;b), если он расположен выше любой ее касательной на этом интервале. График функции у=ƒ(х) называется выпуклым вверх на интервале (а;b), если он расположен ниже любой ее касательной на этом интервале.
Точка графика непрерывной функции у=ƒ(х), отделяющая его части разной выпуклости, называется точкой перегиба.
На рисунке 154 кривая у=ƒ(х) выпукла вверх в интервале (а;с), выпукла вниз в интервале (с;b), точка М(с;ƒ(с)) — точка перегиба.
Интервалы выпуклости вниз и вверх находят с помощью следующей теоремы.
Теорема 25.11. Если функция у=ƒ(х) во всех точках интервала (а;b) имеет отрицательную вторую производную, т. е. ƒ"(х)<0, то график функции в этом интервале выпуклый вверх. Если же ƒ"(х)>0 " xє(а;b) — график выпуклый вниз.
▲Пусть ƒ"(х)<0 " xє(а;b). Возьмем на графике функции произвольную точку М с абсциссой х0є(а;b) и проведем через М касательную (см. рис. 155).
Покажем, что график функции расположен ниже этой касательной. Для этого сравним в точке хє(а; b) ординату у кривой у=ƒ(х) с ординатой укас ее касательной. Уравнение касательной, как известно, есть
Укас-ƒ(х0)=ƒ'(х0)(х-х0), т.е. Укас=ƒ(х0)+f(x0)(x-х0).
Тогда у-укас=ƒ(х)-ƒ(х0)-ƒ'(х0)(х-х0). По теореме Лагранжа, ƒ(х)-ƒ(х0)=ƒ'(с)(х-x0), где с лежит между х0 и х. Поэтому
У-Укас=ƒ'(с)(х-х0)-ƒ'(х0)(х-х0),
т. е.
У-Укас=(ƒ'(с)-ƒ'(х0))(х-х0).
Разность ƒ'(с)-ƒ'(х0) снова преобразуем по формуле Лагранжа:
ƒ'(с)-ƒ'(х0)=ƒ"(с1)(с-х0),
где с1 лежит между х0 и с. Таким образом, получаем
У-Укас=f"(c1)(c-х0)(х-х0).
Исследуем это равенство:
1) если х>х0, то х-х0>0, с-х0>0 и f"(c1)<0. Следовательно, У-Укас<0, т. е. у<укас:
2) если х<х0, то х-х0<0, с-х0<0 и f"(c1)<0. Следовательно, У-Укас<0, т. е. у<укас:
Итак, доказано, что во всех точках интервала (а;b) ордината касательной больше ординаты графика, т. е. график функции выпуклый вверх. Аналогично доказывается, что при ƒ"(х)>0 график выпуклый вниз. ▼
Для нахождения точек перегиба графика функции используется следующая теорема.
Теорема 25.12 (достаточное условие существования точек перегиба). Если вторая производная ƒ"(х) при переходе через точку х0, в которой она равна нулю или не существует, меняет знак, то точка графика с абсциссой х0 есть точка перегиба.
Пусть ƒ"(х)<0 при х<х0 и ƒ"(х)>0 при х>х0. Это значит, что слева от х=х0 график выпуклый вверх, а справа — выпуклый вниз. Следовательно, точка (х0;ƒ(х0)) графика функции является точкой перегиба.
Аналогично доказывается, что если ƒ"(х)>0 при х<x0 и ƒ"(х)<0 при х>х0, то точка (х0;ƒ(х0)) — точка перегиба графика функции у=ƒ(х).
