
- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
Необхідна та достатня умова монотонності функції.
Установим необходимые и достаточные условия возрастания и убывания функции.
Теорема 25.6 (необходимые условия). Если дифференцируемая на интервале (a;b) функция ƒ(х) возрастает (убывает), то ƒ'(х)≥0 (ƒ"(х)≤0) для " x є (a;b).
Пусть функция ƒ(х) возрастает на интервале (α;b). Возьмем произвольные точки х и х+∆х на интервале (α;b) и рассмотрим отношение
Функция ƒ(х) возрастает, поэтому если ∆х>0, то х+∆х>х и ƒ(х+∆х)>ƒ(х); если ∆х<0, то х+∆х<х и ƒ(х+∆х)<ƒ(х). В обоих случаях
так как числитель и знаменатель дроби имеют одинаковые знаки.
По условию теоремы функция ƒ(х) имеет производную в точке х и является пределом рассматриваемого отношения. Следовательно,
Аналогично рассматривается случай, когда функция ƒ (х) убывает на интервале (a;b).
Геометрически теорема 25.6 означает, что касательные к графику возрастающей дифференцируемой функции образуют острые углы с положительным направлением оси Ох или в некоторых точках (на рисунке 145 в точке с абсциссой х0) параллельны оси Ох.
Теорема 25.7 (достаточные условия). Если функция ƒ(х) дифференцируема на интервале (a;b) и ƒ'(х)>0 (ƒ'(х)<0) для " x є (a;b), то эта функция возрастает (убывает) на интервале (a;b).
Пусть ƒ'(х)>0. Возьмем точки х1 и х2 из интервала (a;b), причем x1<х2. Применим к отрезку [x1;x2] теорему Лагранжа: ƒ(х2)- ƒ(x1)=ƒ'(с)(х2-x1), где с є (x1;x2). По условию ƒ'(с)>0, х2-х1>0. Следовательно, ƒ(х2)-ƒ(х1)>0 или ƒ(х2)>ƒ(х1), т. е. функция ƒ(х) на интервале (a;b) возрастает.
Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
Пусть функция f(x) бесконечно дифференцируема в некоторой окрестности точки a. Формальный ряд
называется рядом Тейлора функции f в точке a.
Формула
Тейлора — Пеано Пусть
, z0
— предельная точка множества Df
и
. Если функция f
n-дифференцируема
в смысле Ферма — Лагранжа в точке z0,
то справедлива формула Тейлора — Пеано
где εn(z) - непрерывная в точке z0 функция и εn(z0)=0. Применим метод математической индукции. Если n=0, то утверждение очевидно при εn (z)=f(z)-f(z0). Предположим, что утверждение теоремы справедливо после замены n на n-1 и что функция f n-дифференцируема в смысле Ферма-Лагранжа в точке z0. Согласно определению, существует такая n-1 дифференцируемая в смысле Ферма-Лагранжа в точке z0 функция φ, что ∀z∈Df,
По предположению
где
- непрерывная в точке z0
функция и
. Из
равенств (2) и (3) получаем:
Что
равносильно формуле (1) при
Формула Тейлора з залишковим членом у формі Лагранжа.
Перша теорема Лопіталя, наслідок з неї.
Теорема 25.4 (Правило Лопиталя раскрытия неопределенностей вида 0/0).
Пусть функции ƒ(х) и φ(x) непрерывны и дифференцируемы в окрестности точки х0 и обращаются в нуль в этой точке: ƒ(х0)=φ(х0)=0. Пусть φ'(х)¹ 0 в окрестности точки х0. Если существует предел
▲Применим к функциям ƒ(х) и φ(х) теорему Коши для отрезка [х0;х], лежащего в окрестности точки x0 . Тогда
где с лежит между х0 и х (рис. 144). Учитывая, что ƒ(х0)=φ(х0)=0, получаем
При х→х0, величина с также стремится к х0; перейдем в равенстве (25.4) к пределу:
Так как
Поэтому
Коротко полученную формулу читают так: предел отношения двух бесконечно малых равен пределу отношения их производных, если последний существует.
Замечания :
1. Теорема 25.4 верна и в случае, когда функции ƒ(х) и φ(х) не определены при х=х0, но
Достаточно положить
2. Теорема 25.4 справедлива и в том случае, когда х→∞. Действительно, положив х=1/z, получим
3. Если производные ƒ'(х) и φ'(х) удовлетворяют тем же условиям, что и функции ƒ(х) и φ(х), теорему 25.4 можно применить еще раз: