- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
Похідні вищого порядку функцій заданих явно неявно та параметрично.
1)Функции, заданные явно:
Производной n-го
порядка функции
называется
производная от производной (n-1)-го порядка
этой функции.
.
2)Функции заданные неявно:
.
3)Функции, заданные параметрически.
|
.
|
Формула Лейбніца.
Формулой Лейбница в интегральном исчислении называется правило дифференцирования под знаком интеграла, зависящего от параметра, пределы которого зависят от переменной дифференцирования. Формула названа в честь немецкого математикаГотфрида Лейбница.
[править]Формулировка
Пусть
функция
непрерывна вместе
со своей первой производной
на
прямоугольнике
(отрезок
включает
в себя множества значений
),
a функции
дифференцируемы
на
.
Тогда интеграл
дифференцируем
по
на
и
справедливо равенство
Диференціал вищого порядку.
Дифференциалом порядка n,
где n > 1, от функции
в некоторой точке называется дифференциал
в этой точке от дифференциала порядка (n —
1), то есть
.
Для
функции, зависящей от одной переменной
второй и третий дифференциалы выглядят
так:
Отсюда можно вывести общий вид дифференциала n-го порядка от функции :
При
вычислении дифференциалов высших
порядков очень важно, что
есть
произвольное и не зависящее от
,
которое при дифференцировании по
следует рассматривать как постоянный
множитель.
Теорема Ферма, Ролля та Лагранжа.
Теорема. Пусть
,
непрерывна во всех точках этого
промежутка. Тогда множество значений
функции
–
замкнутый ограниченный промежуток.
В частности, у функции есть наибольшее и наименьшее значения.
Теорема (Ролль). Пусть . Предположим, что
1)
функция
непрерывна
на
;
2) функция дифференцируема во всех внутренних точках ;
3)
.
Тогда
существует точка
,
в которой
.
Доказательство. По
предыдущей теореме, функция
принимает
на
наибольшее
и наименьшее значения. Пусть она достигает
наибольшего и наименьшего значения в
точках
и
соответственно.
Если
и
–
концы отрезка
,
то, поскольку
,
наибольшее и наименьшее значения
функции
совпадают.
Значит, функция
постоянна,
и производная ее во всех внутренних
точках
равна
нулю. Значит, в качестве
можно
взять любую внутреннюю точку
.
Пусть хотя бы одно из чисел
лежит
внутри отрезка
.
Тогда по теореме Ферма получаем, что
производная функции
в
этой точке равна нулю.
Теорема (Лагранж). Пусть и выполняются условия:
1) функция непрерывна на ;
2)
дифференцируема
на
.
Тогда
существует
:
Доказательство. Пусть
.
Рассмотрим функцию
:
Из
условия теоремы ясно, что функция
непрерывна
на
и
дифференцируема на
.
Подберем
и
так,
чтобы
Функция
удовлетворяет
всем условиям теоремы Ролля. Тогда
существует
:
.
Теорема Ферма:
Для
любого натурального
числа
уравнение
не
имеет натуральных решений
,
и
.
Теорема Коші.
Для
любой функции
, аналитической в
некоторой односвязной области
и
для любой замкнутой кривой
справедливо
соотношение
Из
условия аналитичности (уравнений
Коши—Римана) следует, что дифференциальная
форма
замкнута.
Пусть теперь
—
замкнутый самонепересекающийся
кусочно-гладкий контур внутри области
определения функции
,
ограничивающий область
.
Тогда по теореме
Стокса имеем:
