
- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
Рівняння дотичної та нормалі, піддотична та піднормаль.
Розв’язання. Рівняння нормалі має вигляд:
Значення
та
відповідають
значенню
:
Похідну знайдемо за формулою похідної, заданої параметрично:
.
В
точці
маємо
піддотична та під нормаль - напрямлені відрізки АТ і АN, які є ортогональними проекціями на вісь ОХ відрізків дотичної прямої МТ і нормалі МN до плоскої кривої в її точці М (мал.). Якщо рівняння кривої у = f (х), то довжини П. й п. дорівнюють відповідно АТ = — f(а)/f' (а), АN = f (а) f' (а), де а — абсциса точки М.
Похідна складної функції, похідна функції заданої неявно.
Якщо
залежність між x
та y
задана в неявній формі
,
причому надалі будемо вважати, що
диференційовна функція, то для знаходження
похідної y’
достатньо:
а) знайти похідну по від лівої частини рівняння , враховуючи, що y є функцією x ;
б)
прирівняти цю похідну до нуля
;
в) розв’язати отримане рівняння відносно y’.
Зауваження. Якщо неявно задана функція не задана у вигляді , а має ліву і праву частину, можна не зводити до попереднього вигляду, а брати похідну від лівої і правої частини, враховуючи, що y є функцією x (як складна), а потім розв’язати рівняння з одним невідомим y’(x).
Приклад
1.
;
;
.
Приклад
2.
;
2."Двухслойная"
сложная функция записывается в виде
где u = g(x) - внутренняя функция, являющаяся, в свою очередь, аргументом для внешней функции f.
Если
f
и g
- дифференцируемые функции, то сложная
функция
также дифференцируема по x
и ее производная равна
Данная формула показывает, что производная сложной функции равна произведению производной внешней функции на производную от внутренней функции. Важно, однако, что производная внутренней функции вычисляется в точке x, а производная внешней функции - в точке u = g(x)!
Эта формула легко обобщается на случай, когда сложная функция состоит из нескольких "слоев", вложенных иерархически друг в друга.
Рассмотрим несколько примеров, иллюстрирующих правило производной сложной функции. Это правило широко применяется и во многих других задачах раздела "Дифференцирование".
Пример 1
Найти
производную функции
.
Решение.
Поскольку
, то по правилу производной сложной
функции получаем
Логарифмічне диференціювання, похідна функції заданої параметрично.
Если
требуется найти y’
из уравнения
, то можно:
а) логарифмировать обе части уравнения
;
б) дифференцировать обе части полученного равенства, где ln y есть сложная функция от х,
.
в) заменить y его выражением через х
.
Диференціал, його геометричний зміст, застосування до наближених обчислень.
Диференціал в математиці — головна лінійна частина приросту функції або відображення.
Випадок однієї змінної
Нехай
в околиці точки
задана
функція
.
нехай
існує таке
,
що
при
.
Позначим
.
Тоді
функція
називається диференціалом функції
в
точці
.
[ред.]Випадок багатьох змінних
Нехай
в околі точки
задана
функція багатьох змінних
.
Нехай
існує такий вектор
,
що
при
,
де добуток векторів є скалярним добутком.
Позначим
.
Тоді
функція
називатиметься диференціалом функції
в
точці
.
[ред.]Відображення між евклідовими просторами
Також поняття диференціала можна ввести для відображення між евклідовими просторами ƒ Rn → Rm. Нехай x,Δx ∈ Rn — два вектори в просторі Rn. Зміна значення функції ƒ при зміні аргумента на Δx рівна:
Якщо існує m × n матриця A для якої
де вектор ε → 0 при Δx → 0, тоді ƒ називається диференційовною в точці x. Матриця A називається матрицею Якобі, а лінійне перетворення, що ставить у відповідності вектору Δx ∈ Rn вектор AΔx ∈ Rm називається диференціалом dƒ(x) відображення ƒ в точці x.
[ред.]Відображення між многовидами
Диференціал
в точці
гладкого
відображення із гладкого многовиду в
многовид
визначається
як лінійне відображення між дотичними
просторами в
точках
і
тобто
таке
що для довільної гладкої в
точці F(x) функції
виконується
рівність: