
- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
Каноническое
уравнение получается из параметрическиx
уравнений делением одного уравнения
на другое:
где
— координаты Х и У направляющего вектора
прямой, Х0 и У0 координаты точки,
принадлежащей прямой.
Общее векторное уравнение прямой в пространстве:
Поскольку прямая является пересечением двух различных непараллельных плоскостей, заданных соответственно общими уравнениями:
и
то
уравнение прямой можно задать системой
этих уравнений:
Взаємне розміщення прямої та площини у просторі.
Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке, см. следующие рисунки.
рис.6.
рис.7.
рис.8.
Теорема.
Пусть плоскость
задана
общим уравнением
,
а прямая L задана каноническими уравнениями
или параметрическими уравнениями
,
,
в
которых
– координаты нормального вектора плоскости
,
– координаты произвольной
фиксированной точки прямой L,
–
координаты направляющего вектора прямой L. Тогда:
1)
если
,
то прямая L пересекает плоскость
в
точке,координаты которой
можно
найти из системы уравнений
;
(7)
2)
если
и
,
то прямая лежит на плоскости;
3)
если
и
,
то прямая параллельна плоскости.
Доказательство.
Условие
говорит
о том, что вектроры
и
не
ортогональны, а значит прямая не
параллельна плоскости и не лежит в
плоскости, а значит пересекает ее в
некоторой точке М. Координаты точки
М удовлетворяют как уравнению плоскости,
так и уравнениям прямой, т.е. системе
(7). Решаем первое уравнение системы (7)
относительно неизвестной t и затем,
подставляя найденное значение t в
остальныеуравнения системы,
находим координаты искомой
точки.
Если
,
то это означает, что
.
А такое возможно лишь тогда, когда прямая
лежит на плоскости или параллельна ей.
Если прямая лежит на плоскости, то любая
точка прямой является точкой плоскости
икоординаты любой
точки прямой удовлетворяют уравнению
плоскости. Поэтому достаточно проверить,
лежит ли на плоскости точка
.
Если
,
то точка
–
лежит на плоскости, а это означает, что
и сама прямая лежит на плоскости.
Если , а , то точка на прямой не лежит на плоскости, а это означает, что прямая параллельна плоскости.
Теорема доказана.
Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
Э́ллипс— геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точек F1 и F2 (называемых фокусами) постоянна и больше расстояния между фокусами, то есть
| F1M | + | F2M | = 2a, причем | F1F2 | < 2a.
Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой. Эллипс также можно описать как пересечение плоскости и кругового цилиндра или как ортогональную проекцию окружности на плоскость.
Отрезок AB, проходящий через фокусы эллипса, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
Точка пересечения большой и малой осей эллипса называется его центром.
Точки пересечения эллипса с осями являются его вершинами.
Расстояния r1 и r2 от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
Расстояние
называется фокальным расстоянием.
Диаметром называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
Эксцентриситетом
эллипса называется отношение
.
Эксцентриситет (также обозначается ε)
характеризует вытянутость эллипса. Чем
эксцентриситет ближе к нулю, тем эллипс
больше напоминает окружность и наоборот,
чем эксцентриситет ближе к единице, тем
он более вытянут.
Фокальным
параметром
называется половина длины хорды,
проходящей через фокус и перпендикулярной
большой оси эллипса.
Отношение
длин малой и большой полуосей называется
коэффициентом сжатия эллипса или
эллиптичностью:
.
Величина, равная
называется сжатием эллипса. Для окружности
коэффициент сжатия равен единице, сжатие
— нулю. Коэффициент и эксцентриситет
эллипса связаны соотношением
Каноническое уравнение
Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):
Оно
описывает эллипс с центром в начале
координат, оси которого совпадают с
осями координат. Для определённости
положим, что
В этом случае величины a
и b
— соответственно, большая и малая
полуоси эллипса.
Зная полуоси эллипса можно вычислить его фокальное расстояние и эксцентриситет:
Координаты фокусов эллипса:
Эллипс имеет две директрисы, уравнения которых можно записать как
Фокальный параметр (т.е. половина длины хорды, проходящей через фокус и перпендикулярной оси эллипса) равен
Фокальные
радиусы, т. е. расстояния от фокусов до
произвольной точки кривой
Уравнение диаметра, сопряжённого хордам с угловым коэффициентом k:
Уравнение
касательных, проходящих через точку
Уравнение касательных, имеющих данный угловой коэффициент k::
Уравнение нормали в точке