
- •Множини, операції над множинами, приклади.
- •Формула бінома ( метод матиматичної індукції ).
- •Границя послідовності означення, приклади, єдиність.
- •Основні властивості границі послідовності ( суми, різниці, добутку, частки ).
- •Теореми про обмеженість збіжної послідовності, про перехід до границі в нерівності.
- •Теорема про три послідовності.
- •Теорема про існування границі монотонної обмеженої послідовності.
- •Число е як границя послідовності.
- •Верхня та нижня границя послідовності означення теорема про їх характеризацію.
- •Фундаментальність послідовності, довести фундаментальність збіжної послідовності, критерій Коші.
- •Означення границі функції в точці по Коші та по Гейне.
- •Односторонні границі функції, елементарні властивості цих границь.
- •Нескінчено малі та великі величини їх зв’язок, порівняння нескінчено малих та великих величин.
- •Границя функції коли X0.
- •Неперервність функції в точці, неперевність суми, різниці, добутку та частки двох функцій.
- •Перша теорема Вейерщтрасса.
- •Друга теорема Вейерштрасса.
- •Рівномірна неперервність на замкнутому інтервалі, теорема Кантора.
- •Розриви функції, приклади.
- •Матриці, операції над матрицями.
- •Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •Визначник означення та обчислення, властивості визначника.
- •Знаходження оберненої матриці через алгебраїчні доповнення та з допомогою елементарних перетворень.
- •Метод Гауса розв’язування системи лінійних рівнянь.
- •Описание метода
- •2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. ]Условие совместности
- •Достоинства метода
- •Матричний метод розв’язування системи лінійних рівнянь.
- •Метод Крамера розв’язування системи лінійних рівнянь.
- •Евклідовий n-мірний простір, операції над векторами, скалярний добуток.
- •Поняття лінійної залежності та незалежності векторів, базис.
- •1) Необхідність
- •2) Достатність
- •1) Необхідність
- •Лінійний оператор, властивості лінійних операторів, представлення лінійного оператора в n-мірному просторі.
- •Матриця переходу від одного базису до іншого, запис матриці оператора в новому базисі.
- •Перехід від одного базису до іншого
- •Наприклад
- •[Ред.]Деталі
- •Рядковий та стовпчиковий ранг матриці, ранг мариці.
- •Розв’язність системи лінійних однорідних рівнянь, представлення загального розв’язку .
- •1)Загальні поняття системи лінійних рівнянь.
- •2) Однорідні системи лінійних рівнянь.
- •3) Загальний розв’язок системи неоднорідних лінійних рівнянь.
- •4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
- •Теорема Кронекера-Капеллі, представлення загального розв’язку.
- •Следствия
- •Власні значення та власні вектори лінійного оператора їх знаходження.
- •Квадратичні та білінійні форми приведення їх до канонічного вигляду.
- •Скалярний та векторний добуток векторів їх застосування.
- •Векторний добуток
- •Змішаний добуток векторів та його застосування.
- •Загальне рівняння прямої на площині вивід зміст коефіцієнтів.
- •Нормальне рівняння прямої знаходження відстані від точки до прямої.
- •Загальне рівняння площини вивід його, зміст коефіцієнтів.
- •Рівняння площини що проходить через три точки, через точку та два вектора.
- •Рівняння площини в відрізках на осях, та нормальне рівняння площини.
- •Рівняння прямої у просторі як перетин площин, канонічне рівняння прямої.
- •Взаємне розміщення прямої та площини у просторі.
- •Криві другого порядку вивід рівняння еліпса, основні параметри еліпса.
- •Гіпербола вивід канонічного рівняння, основні параметри.
- •Парабола вивід канонічного рівняння, параметри.
- •Приведення до канонічного вигляду рівняння кривої другого порядку.
- •Поверхні другого порядку основні типи поверхонь.
- •Похідна функції в точці означення основні властивості.
- •Геометричний та механічний зміст похідної.
- •Рівняння дотичної та нормалі, піддотична та піднормаль.
- •Похідна складної функції, похідна функції заданої неявно.
- •Логарифмічне диференціювання, похідна функції заданої параметрично.
- •Диференціал, його геометричний зміст, застосування до наближених обчислень.
- •Похідні вищого порядку функцій заданих явно неявно та параметрично.
- •Формула Лейбніца.
- •Диференціал вищого порядку.
- •Теорема Ферма, Ролля та Лагранжа.
- •Теорема Коші.
- •Необхідна та достатня умова монотонності функції.
- •Формула Тейлора для многочлена, формула Тейлора з залишковим членом у формі Пеано.
- •Формула Тейлора з залишковим членом у формі Лагранжа.
- •Перша теорема Лопіталя, наслідок з неї.
- •Друга теорема Лопіталя та наслідок знеї.
- •Дослідження функції на випуклість.
- •Локальний екстремум дослідження.
- •Точки перегину, дослідження на екстремум за допомогою старших похідних.
- •Асимптоти функції, знаходження асимптот.
- •Функції багатьох змінних, знаходження похідної по напрямку, градієнт.
- •Частинні похідні високого порядку, умови співпадіння змішаних похідних.
- •Необхідні умови локального екстремуму, геометричний зміст диференціалу.
- •Формула Тейлора для функції багатьох змінних.
- •Достатні умови екстремуму для функції двох змінних.
- •Умовний екстремум функція Лагранжа.
- •Знаходження максимального та мінімального значення в області.
- •Первісна функції означення основні властивості.
- •Формула інтегрування за частинами в невизначенному інтегралі.
- •Заміна змінних в невизначенному інтегралі
- •Комплексні числа, операції над комплексними числами, алгебраїчна та тригонометрична форма комплексного числа.
- •Геометричне представлення
- •Формули Ейлера, геометрична інтерпритація комплексного числа
- •Корінь n-го степеня з комплексного числа.
- •Теорема Безу, наслідок з неї.
- •Кратні корені, розклад полінома на незвідні над полем комплексних чисел.
- •Обчислення інтегралу
- •Інтегрування елементарних дробів 1, 2 та 3 типів.
- •Інтегрування елементарного дробу 4-го типу, рекурентна формула.
- •Загальна формула інтегрування дробово-раціональної функції.
- •Метод Остроградського інтегрування дробово-раціональної функції.
- •Обчислення інтегралу .
- •Інтегрування диференціального біному.
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу .
- •Очислення інтегралу
4) Фундаментальні розв’язки однорідної системи лінійних рівнянь.
Розв’язки е1, е2, …, еr однорідної системи рівнянь називаються лінійно незалежними, якщо лінійна комбінація цих розв’язків λ1е1+ λ2е2+…+ λrеr дорівнює нульовому стовпцю тільки за умови λ1= λ2=…=λr=0. побудуємо матрицю розв’язків, розташувавши матриці-стовпці розв’язків по стовпцям нової матриці. Відповідно до теореми про ранг матриці, ранг нової матриці буде дорівнювати числу стовпців нової матриці, тобто числу лінійно незалежних розв’язків системи.
Означення
Сукупність лінійно незалежних розв’язків е1, е2, …, еr однорідної системи рівнянь називається фундаментальною, якщо загальний розв’язок системи є лінійною комбінацією розв’язків е1, е2, …, еr.
Теорема (про фундаментальні розв’язки)
Якщо ранг р матриці коефіцієнтів при змінних однорідної системи рівнянь менше числа змінних n, то:
існує сукупність лінійно незалежних розв’язків системи
число лінійно незалежних розв’язків дорівнює n-р
будь-який розв’язок системи можна представити у вигляді сукупності цих незалежних розв’язків, тобто у вигляді лінійної комбінації фундаментального набору розв’язків.
Теорема Кронекера-Капеллі, представлення загального розв’язку.
Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений:
Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.
Доказательство
Необходимость.Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец b является линейной комбинацией столбцов матрицы A. Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (соответственно столбец), которая является линейной комбинацией других строк (соответственно столбцов) следует, что .
ДостаточностьПусть . Возьмем в матрице A какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы B. Тогда согласно теореме о базисном миноре последний столбец матрицы B будет линейной комбинацией базисных столбцов, то есть столбцов матрицы A. Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы A. Это означает совместность системы.
Следствия
Количество главных переменных системы равно рангу системы.
Совместная система будет определена (её решение единственно), если ранг системы равен ч
(Теорема Кронекера-Капеллі. Система лінійних рівнянь є сумісною тоді і тільки тоді, коли ранг матриці системи А дорівнює рангу розширеної матриці А*.Хоча теорема Кронекера-Капелли дає можливість визначити, чи є система сумісною, застосовується вона досить рідко,
в основному втеоретичних дослідженнях. Причина полягає в тім, що обчислення,виконувані при знаходженні рангу матриці, в основному збігаються зобчисленнями при знаходженні рішення системТому,з вичайнозамість того, щоб знаходити ранги матриць А та А* , шукають рішення системи. Якщо його вдається знайти, то довідаємося, що система сумісна й одночасно одержуємо її рішення. Якщо рішення не вдається знайти, то робимо висновок, що система несумісна.)