Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы матан.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.24 Mб
Скачать

Питання з математики

  1. Множини, операції над множинами, приклади.

Мно́жество — один из ключевых объектов математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит и не имеющее определения. Однако, можно дать описание множества, например в формулировке Георга Кантора:

Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).

Другая формулировка принадлежит Бертрану Расселлу: «Множество суть совокупность различных элементов, мыслимая как единое целое». Также, возможно косвенное определение через аксиомы теории множеств.

В математической логике и дискретной математике часто употребляемый синоним множества — алфавит.

Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект обычно считается множеством.

Два множества A и B могут вступать друг с другом в различные отношения.

A включено в B, если каждый элемент множества A принадлежит также и множеству B:

A включает B, если B включено в A:

A равно B, если A и B включены друг в друга:

A строго включено в B, если A включено в B, но не равно ему:

A строго включает B, если B строго включено в A:

A и B не пересекаются, если у них нет общих элементов:

А и В не пересекаются

A и B находятся в общем положении, если существует элемент, принадлежащий исключительно множеству A, элемент, принадлежащий исключительно множеству B, а также элемент, принадлежащий обоим множествам:

А и В находятся в общем положении

Ниже перечислены основные операции над множествами:

пересечение:

объединение:

Если множества A и B не пересекаются: , то их объединение обозначают также: .

разность (дополнение):

симметрическая разность:

Декартово или прямое произведение:

Для лучшего понимания смысла этих операций используются диаграммы Эйлера — Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.

  1. Формула бінома ( метод матиматичної індукції ).

. Математическая индукция — в математике — один из методов доказательства. Используется, чтобы доказать истинность некоего утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.

Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.

Предположим, что требуется установить справедливость бесконечной последовательности утверждений, занумерованных натуральными числами: .

Допустим, что

1)Установлено, что P1 верно. (Это утверждение называется базой индукции.)

2)Для любого n доказано, что если верно Pn, то верно Pn + 1. (Это утверждение называется индукционным переходом.)

Тогда все утверждения нашей последовательности верны.

Логическим основанием для этого метода доказательства служит так называемая аксиома индукции, пятая из аксиом Пеано, определяющих натуральные числа. Верность метода индукции эквивалентна тому, что в любом подмножестве натуральных чисел существует минимальный элемент.

Существует также вариация, так называемый принцип полной математической индукции. Вот его строгая формулировка:

Пусть имеется последовательность утверждений P1, P2, P3, . Если для любого натурального n из того, что истинны все P1, P2, P3, , Pn − 1, следует также истинность Pn, то из истиннности P1 следует истинность всех утверждений этой последовательности.

Принцип полной математической индукции является прямым применением более сильной трансфинитной индукции.

Принцип полной математической индукции также эквивалентен аксиоме индукции в аксиомах Пеано.

пусть (a+b)^n = сумма по k от 0 до n C_n^k a^k b^(n-k) тогда (a+b)^(n+1) = (a+b)^n * (a+b), (a+b)^n раскроем по предположению, получим a * (сумма) + b * (сумма) посмотрим на коэффициент при a^k b^(n+1-k) (при k от 1 до n) a^k b^(n-k) = a * (a^(k-1) b^(n-(k-1)) ) = b * (a^k b^(n-k) ) значит коэффициент равен C_n^(k-1) + C_n^k а это как раз равно C_(n+1)^k значит при k от 1 до n коэффициент равен чему надо, при k равном 0 или n - очевидно