
- •Задачи интеллектуального анализа: кластеризация
- •Распределенные вычисления на примере cloud-based по на примере prezi.Com
- •Условия использования сервиса Prezi.Com
- •Технология Redis
- •Программное обеспечение интеллектуального анализа: Система statistica Data Miner
- •Программное обеспечение интеллектуального анализа: Oracle Data Mining
- •Понятие «Data mining», Data mining и базы данных.
- •Архитектура odm
- •Функциональные возможности odm.
- •Технология BigTable (Google)
- •MapReduce: модель и реализации.
- •2. Реализация в распределенной среде.
- •3. Расширенные средства.
- •«Методы Data Mining: ассоциативные правила»
- •1. Определение. Основные понятия
- •2. Типы ассоциативных правил
- •3. Алгоритм apriori
- •4. Применение
- •«Методология Data Mining: crisp-dm»
- •Понимание бизнеса (Business Understanding)
- •Понимание данных (Data Understanding)
- •Подготовка данных (Data Preparation)
- •Моделирование (Modeling)
- •Оценка (Evaluation)
- •Развертывание (Deployment)
- •Большие данные
- •История
- •Методики анализа больших данных
- •Почему данные стали большими
- •Аналитический инструментарий
- •Как справиться с большими данными?
- •Кому выгодны большие данные
- •Проблема больших данных в различных отраслях
- •Информационной экономике нужны миллионы ит-сотрудников
- •10, Спрос на администраторов Big data
- •Стадии интеллектуального анализа: задача консолидации
- •Основные этапы консолидации данных
- •Источники данных
- •Обобщенная схема процесса консолидации
- •Вероятностный вывод
- •Методы интеллектуального анализа : эволюционное программирование и генетические алгоритмы
- •Применение генетических алгоритмов
- •Примеры программного обеспечения
- •Методы интеллектуального анализа: деревья решений
- •Документно-ориентированная система управления базами данных CouchDb
- •Ftp Сервер
- •Методы интеллектуального анализа: иерархические модели кластерного анализа
- •Документно-ориентированная система управления базами данных MongoDb
- •2.Понятие о документно-ориентированной системе управления базами данных MongoDb
- •3. Возможности
- •4.История разработки
- •5. Использование MongoDb
- •6.Оценка производительности
- •7.Безопасность
- •8. Соответствие между sql и MongoDb
- •Простые запросы на выборку
- •Запросы на выборку с регулярными выражениями
- •Запросы на выборку с группировками
- •Запросы на выборку с объединением таблиц
- •Информация о запросе
- •Создание, изменение и удаление документов
- •Бизнес-анализ
- •Часть 1. Понятие «бизнес-анализ»
- •Часть 2. Разделы науки бизнес-анализа
- •Часть 3. Техники бизнес-анализа
- •Часть 4.Система бизнес-анализа и поддержки принятия решений
- •Часть 5. Методы бизнес-анализа
- •6. Роли бизнес-аналитиков
- •7. Цели бизнес-аналитиков
- •8.Выдержки из должностной инструкции бизнес-аналитика
- •9.Будущее бизнес-аналитики
- •Иску́сственные нейро́нные се́ти
- •Систе́ма подде́ржки приня́тия реше́ний
- •1. Сппр- хранилище данных
- •2. Аналитические системы
- •Субд Cassandra
- •Хранилища данных и средства их построения Data Warehousing
- •Программное обеспечение интеллектуального анализа: statistica
- •Бурение и расслоение
- •Классификатор
- •Разведчик многомерных моделей
- •Нейросетевой разведчик
- •Рабочее пространство statistica Data Miner состоит из четырех основных частей:
- •Автоматизация любых процедур с помощью statistica Visual Basic;
3. Расширенные средства.
В большинстве приложений MapReduce оказывается достаточно просто написать свои функции Map и Reduce. Однако в ряде случаев оказываются полезными некоторые расширения базовых функциональных возможностей.
Функция разделения.
Пользователи MapReduce явно указывают требуемое число задач Reduce R (и соответствующих результирующих файлов). Данные распределяются между этими задачами с использованием некоторой функции разделения от значений промежуточного ключа. По умолчанию используется функция хэширования (например, "hash(key) mod R"). Однако пользователи MapReduce могут специфицировать и собственные функции разделения.
Гарантии упорядоченности.
Внутри каждого раздела, передаваемого задаче Reduce, данные упорядочены по возрастанию значений промежуточного ключа. Это позволяет задачам Reduce производить отсортированные результирующие файлы.
Функция-комбинатор.
В некоторых случаях в результатах задачи Map содержится значительное число повторящихся значений промежуточного ключа, а определенная пользователем задача Reduce является коммутативной и ассоциативной. В таких случаях пользователь может определить дополнительную функцию-комбинатор (Combiner), выполняющую частичную агрегацию таких данных до их передачи по сети. Функция Combiner выполняется на той же машине, что и задача Map. Обычно для ее реализации используется тот же самый код, что и для реализации функции Reduce. Елинственное различие между функциями Combiner и Reduce состоит в способе работы с их результирующими данными. Результаты функции Reduce записываются в окончательный файл результатов. Результаты же функции Combiner помещаются в промежуточные файлы, которые впоследствии пересылаются в задачи Reduce.
Форматы входных и результирующих данных.
В библиотеке MapReduce поддерживается возможность чтения входных данных в нескольких разных форматах. Например, в режиме "text" каждая строка трактуется как пара "ключ-значение", где ключ – это смещение до данной строки от начала файла, а значение – содержимое строки. В другом распространенном формате входные данные представляются в виде пар "ключ-значение", отсортированных по значениям ключа. В каждой реализации формата входных данных известно, каким образом следует расшеплять данные на осмысленные части, которые обрабатываются отдельными задачами Map (например, данные формата "text" расщепляются только по границами строк).
Пользователи могут добавить к реализации собственные форматы входных данных, обеспечив новую реализацию интерфейса reader (в реализации Hadoop – RecordReader). Reader не обязательно должен читать данные из файла, можно легко определить reader, читающий данные из базы данных или из некоторой структуры в виртуальной памяти.
Аналогичным образом, поддерживаются возможности генерации данных в разных форматах, и имеется простая возможность определения новых форматов результирующих данных.
Думаю, что для общего ознакомления с технологией MapReduce и для понимания следующих разделов статьи этой информации достаточно. Кроме того, она позволяет понять, какие особенности модели и реализаций MapReduce обеспечивают масштабируемость технологии до десятков тысяч узлов, ее отказоустойчивость, дешевизну загрузки данных и возможность использования явно написанного кода, который хорошо распараллеливается.