
- •Задачи интеллектуального анализа: кластеризация
- •Распределенные вычисления на примере cloud-based по на примере prezi.Com
- •Условия использования сервиса Prezi.Com
- •Технология Redis
- •Программное обеспечение интеллектуального анализа: Система statistica Data Miner
- •Программное обеспечение интеллектуального анализа: Oracle Data Mining
- •Понятие «Data mining», Data mining и базы данных.
- •Архитектура odm
- •Функциональные возможности odm.
- •Технология BigTable (Google)
- •MapReduce: модель и реализации.
- •2. Реализация в распределенной среде.
- •3. Расширенные средства.
- •«Методы Data Mining: ассоциативные правила»
- •1. Определение. Основные понятия
- •2. Типы ассоциативных правил
- •3. Алгоритм apriori
- •4. Применение
- •«Методология Data Mining: crisp-dm»
- •Понимание бизнеса (Business Understanding)
- •Понимание данных (Data Understanding)
- •Подготовка данных (Data Preparation)
- •Моделирование (Modeling)
- •Оценка (Evaluation)
- •Развертывание (Deployment)
- •Большие данные
- •История
- •Методики анализа больших данных
- •Почему данные стали большими
- •Аналитический инструментарий
- •Как справиться с большими данными?
- •Кому выгодны большие данные
- •Проблема больших данных в различных отраслях
- •Информационной экономике нужны миллионы ит-сотрудников
- •10, Спрос на администраторов Big data
- •Стадии интеллектуального анализа: задача консолидации
- •Основные этапы консолидации данных
- •Источники данных
- •Обобщенная схема процесса консолидации
- •Вероятностный вывод
- •Методы интеллектуального анализа : эволюционное программирование и генетические алгоритмы
- •Применение генетических алгоритмов
- •Примеры программного обеспечения
- •Методы интеллектуального анализа: деревья решений
- •Документно-ориентированная система управления базами данных CouchDb
- •Ftp Сервер
- •Методы интеллектуального анализа: иерархические модели кластерного анализа
- •Документно-ориентированная система управления базами данных MongoDb
- •2.Понятие о документно-ориентированной системе управления базами данных MongoDb
- •3. Возможности
- •4.История разработки
- •5. Использование MongoDb
- •6.Оценка производительности
- •7.Безопасность
- •8. Соответствие между sql и MongoDb
- •Простые запросы на выборку
- •Запросы на выборку с регулярными выражениями
- •Запросы на выборку с группировками
- •Запросы на выборку с объединением таблиц
- •Информация о запросе
- •Создание, изменение и удаление документов
- •Бизнес-анализ
- •Часть 1. Понятие «бизнес-анализ»
- •Часть 2. Разделы науки бизнес-анализа
- •Часть 3. Техники бизнес-анализа
- •Часть 4.Система бизнес-анализа и поддержки принятия решений
- •Часть 5. Методы бизнес-анализа
- •6. Роли бизнес-аналитиков
- •7. Цели бизнес-аналитиков
- •8.Выдержки из должностной инструкции бизнес-аналитика
- •9.Будущее бизнес-аналитики
- •Иску́сственные нейро́нные се́ти
- •Систе́ма подде́ржки приня́тия реше́ний
- •1. Сппр- хранилище данных
- •2. Аналитические системы
- •Субд Cassandra
- •Хранилища данных и средства их построения Data Warehousing
- •Программное обеспечение интеллектуального анализа: statistica
- •Бурение и расслоение
- •Классификатор
- •Разведчик многомерных моделей
- •Нейросетевой разведчик
- •Рабочее пространство statistica Data Miner состоит из четырех основных частей:
- •Автоматизация любых процедур с помощью statistica Visual Basic;
Программное обеспечение интеллектуального анализа: Oracle Data Mining
Понятие «Data mining», Data mining и базы данных.
Data Mining (добыча данных, интеллектуальный анализ данных, глубинный анализ данных) — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.
Основу методов Data Mining составляют всевозможные методы классификации, моделирования и прогнозирования.
Методы Data mining имеет смысл применять только для достаточно больших баз данных. В каждой конкретной области исследований существует свой критерий «великости» базы данных.
Oracle Data Mining .
Oracle Data Mining (ODM) — это опция СУБД Oracle Enterprise Edition.
Корпорация Oracle предлагает своим пользователям набор продуктов класса и сервисов класса Data Mining. Этот набор помогает компаниям понять и предвидеть поведение клиентов (покупателей, заказчиков) и создавать полные интегрированные решения по управлению отношениями с клиентами (CRM).
Mining работает непосредственно в самой базе данных, исключая проблемы, связанные с перемещением, дублированием и защитой данных, а также масштабируемостью инструментария. Более того ODM изначально был разработан так, чтобы хорошо стыковаться с SQL. Другие data mining продукты требуют использование сложных, медленных операций при поиске закономерностей в схемах типа “звезде”. Обычно использованием инструментов data mining требует перевода данных из транзакционной формы в плоскую, денормализованную. ODM разработан так, чтобы свободно выполнять поиск закономерностей в схемах типа “звезда” напрямую. Такой подход делает работу проще, дает в руки мощные инструменты и повышает производительность.
Архитектура odm
Согласно новой архитектуре Oracle Data Mining функции data mining переносятся в базу данных. В комплекте Oracle Data Mining Suite Release 3.7 данные выбираются из базы данных, где происходит все манипулирование с данными, раскапывание и зачет (mining, and scoring). Пользователи взаимодействуют с этим ПО через графический интерфейс Windows.
Новые продукты data mining от корпорации Oracle будут использовать более тесную интеграцию с базой данных для минимального перемещения данных и максимального доступа пользователей. Используя более тесную интеграцию с базой данных, новая архитектура data mining облегчит агрегирование данных из различных источников. Данные, как традиционного офлайнового бизнеса, так и е-бизнеса могут быть более легко консолидированы, управляемы, "раскопаны" для большего понимания и получения полного представления об этом новом клиенте.
Функциональные возможности odm.
ODM поддерживает все этапы технологии извлечения знаний, включая постановку задачи, подготовку данных, автоматическое построение моделей, анализ и тестирование результатов, использование моделей в реальных приложениях.
Существенно, что модели строятся автоматически на основе анализа имеющихся данных об объектах, наблюдениях и ситуациях с помощью специальных алгоритмов. Основу опции ODM составляют процедуры, реализующие различные алгоритмы построения моделей классификации, регрессии, кластеризации.
На этапе подготовки данных обеспечивается доступ к любым реляционным базам, текстовым файлам, файлам формата SAS. Дополнительные средства преобразования и очистки данных позволяют изменять вид представления, проводить нормализацию значений, выявлять неопределенные или отсутствующие значения. На основе подготовленных данных специальные процедуры автоматически строят модели для дальнейшего прогнозирования, классификации новых ситуаций, выявления аналогий.
Oracle Data Mining строит прогнозирующие и дескрипторные модели.
Прогнозирующие модели:
классификация;
регрессия;
поиск существенных атрибутов.
Дескрипторные модели:
кластеризация;
поиск ассоциаций;
выделение признаков.