
- •Задачи интеллектуального анализа: кластеризация
- •Распределенные вычисления на примере cloud-based по на примере prezi.Com
- •Условия использования сервиса Prezi.Com
- •Технология Redis
- •Программное обеспечение интеллектуального анализа: Система statistica Data Miner
- •Программное обеспечение интеллектуального анализа: Oracle Data Mining
- •Понятие «Data mining», Data mining и базы данных.
- •Архитектура odm
- •Функциональные возможности odm.
- •Технология BigTable (Google)
- •MapReduce: модель и реализации.
- •2. Реализация в распределенной среде.
- •3. Расширенные средства.
- •«Методы Data Mining: ассоциативные правила»
- •1. Определение. Основные понятия
- •2. Типы ассоциативных правил
- •3. Алгоритм apriori
- •4. Применение
- •«Методология Data Mining: crisp-dm»
- •Понимание бизнеса (Business Understanding)
- •Понимание данных (Data Understanding)
- •Подготовка данных (Data Preparation)
- •Моделирование (Modeling)
- •Оценка (Evaluation)
- •Развертывание (Deployment)
- •Большие данные
- •История
- •Методики анализа больших данных
- •Почему данные стали большими
- •Аналитический инструментарий
- •Как справиться с большими данными?
- •Кому выгодны большие данные
- •Проблема больших данных в различных отраслях
- •Информационной экономике нужны миллионы ит-сотрудников
- •10, Спрос на администраторов Big data
- •Стадии интеллектуального анализа: задача консолидации
- •Основные этапы консолидации данных
- •Источники данных
- •Обобщенная схема процесса консолидации
- •Вероятностный вывод
- •Методы интеллектуального анализа : эволюционное программирование и генетические алгоритмы
- •Применение генетических алгоритмов
- •Примеры программного обеспечения
- •Методы интеллектуального анализа: деревья решений
- •Документно-ориентированная система управления базами данных CouchDb
- •Ftp Сервер
- •Методы интеллектуального анализа: иерархические модели кластерного анализа
- •Документно-ориентированная система управления базами данных MongoDb
- •2.Понятие о документно-ориентированной системе управления базами данных MongoDb
- •3. Возможности
- •4.История разработки
- •5. Использование MongoDb
- •6.Оценка производительности
- •7.Безопасность
- •8. Соответствие между sql и MongoDb
- •Простые запросы на выборку
- •Запросы на выборку с регулярными выражениями
- •Запросы на выборку с группировками
- •Запросы на выборку с объединением таблиц
- •Информация о запросе
- •Создание, изменение и удаление документов
- •Бизнес-анализ
- •Часть 1. Понятие «бизнес-анализ»
- •Часть 2. Разделы науки бизнес-анализа
- •Часть 3. Техники бизнес-анализа
- •Часть 4.Система бизнес-анализа и поддержки принятия решений
- •Часть 5. Методы бизнес-анализа
- •6. Роли бизнес-аналитиков
- •7. Цели бизнес-аналитиков
- •8.Выдержки из должностной инструкции бизнес-аналитика
- •9.Будущее бизнес-аналитики
- •Иску́сственные нейро́нные се́ти
- •Систе́ма подде́ржки приня́тия реше́ний
- •1. Сппр- хранилище данных
- •2. Аналитические системы
- •Субд Cassandra
- •Хранилища данных и средства их построения Data Warehousing
- •Программное обеспечение интеллектуального анализа: statistica
- •Бурение и расслоение
- •Классификатор
- •Разведчик многомерных моделей
- •Нейросетевой разведчик
- •Рабочее пространство statistica Data Miner состоит из четырех основных частей:
- •Автоматизация любых процедур с помощью statistica Visual Basic;
Основные этапы консолидации данных
выбор источников данных;
разработка стратегии консолидации;
оценка качества данных;
обогащение;
очистка;
перенос в хранилище данных.
Источники данных
Ключевым понятием консолидации является источник данных — объект, содержащий структурированные данные, которые могут оказаться полезными для решения аналитической задачи. Необходимо, чтобы используемая аналитическая платформа могла осуществлять доступ к данным из этого объекта непосредственно либо после их преобразования в другой формат. В противном случае очевидно, что объект не может считаться источником данных.
Сначала осуществляется выбор источников, содержащих данные, которые могут иметь отношение к решаемой задаче, затем определяются тип источников и методика организации доступа к ним. В связи с этим можно выделить три основных подхода к организации хранения данных.
Данные, хранящиеся в отдельных (локальных) файлах, например в текстовых файлах с разделителями, документах Word, Excel и т.д. Такого рода источником может быть любой файл, данные в котором организованы в виде столбцов и записей.
Базы данных (БД) различных СУБД, таких как Oracle, SQL Server, Firebird, dBase, FoxPro, Access и т.д. Файлы БД лучше поддерживают целостность структуры данных, поскольку тип и свойства их полей жестко задаются при построении таблиц.
Специализированные хранилища данных (ХД) являются наиболее предпочтительным решением, поскольку их структура и функционирование специально оптимизируются для работы с аналитической платформой.
При разработке стратегии консолидации данных необходимо учитывать характер расположения источников данных — локальный, когда они размещены на том же ПК, что и аналитическое приложение, либо удаленный, если источники доступны только через локальную или Глобальную компьютерные сети. Характер расположения источников данных может существенно повлиять на качество собранных данных (потеря фрагментов, несогласованность во времени их обновления, противоречивость и т.д.).
Другой важной задачей, которую требуется решить в рамках консолидации, является оценка качества данных с точки зрения их пригодности для обработки с помощью различных аналитических алгоритмов и методов. В большинстве случаев исходные данные являются «грязными», то есть содержат факторы, не позволяющие их корректно анализировать, обнаруживать скрытые структуры и закономерности, устанавливать связи между элементами данных и выполнять другие действия, которые могут потребоваться для получения аналитического решения. К таким факторам относятся ошибки ввода, пропуски, аномальные значения, шумы, противоречия и т.д. Поэтому перед тем, как приступить к анализу данных, необходимо оценить их качество и соответствие требованиям, предъявляемым аналитической платформой. Если в процессе оценки качества будут выявлены факторы, которые не позволяют корректно применить к данным те или иные аналитические методы, необходимо выполнить соответствующую очистку данных.
Очистка данных — комплекс методов и процедур, направленных на устранение причин, мешающих корректной обработке: аномалий, пропусков, дубликатов, противоречий, шумов и т.д.
Еще одной операцией, которая может понадобиться при консолидации данных, является их обогащение.
Обогащение — процесс дополнения данных некоторой информацией, позволяющей повысить эффективность решения аналитических задач.
Обогащение позволяет более эффективно использовать консолидированные данные. Его необходимо применять в тех случаях, когда данные содержат недостаточно информации для удовлетворительного решения определенной задачи анализа. Обогащение данных позволяет повысить их информационную насыщенность и, как следствие, значимость для решения аналитической задачи.