
- •2. История развития методов оптимизации в экономике.
- •3. Основные понятия и обозначения в линейном программировании.
- •4. Классификация задач математического программирования.
- •5. Переход от исходной задачи линейного программирования к канонической. Экономический смысл дополнительных переменных.
- •6. Графическое решение задачи линейного программирования с двумя переменными.
- •7 . Возможные варианты графического решения b
- •8. Определения n-мерного пространства.
- •9. Фундаментальная теорема линейного программирования для ограниченной области допустимых решений.
- •10. Алгоритм симпликсного методы в полных таблицах.
- •12. Метод искусственного базиса. М-задача и ее решение.
- •13. Теоремы м-метода. Определение решения основной задачи по решению м-задачи.
- •14. Постановка и правила записи двойственной задачи.
- •15. Экономический смысл двойственной задачи и двойственных оценок.
- •16. Свойства двойственных задач (теоремы двойственности). Графический метод решения двойственной задачи.
- •17. Запись оптимального решения прямой и двойственной задач.
- •18. Анализ оптимального решения с помощью коэффициентов последней симпликсной таблицы и двойственных оценок ограничений.
- •19. Решение задач линейного программирования в приложении ms Excel «Поиск решения».
- •20. Постановка и математическая запись транспортной задачи.
- •21. Методы получения исходного опорного решения в транспортной задаче.
- •22. Метод потенциалов при решении транспортной задачи.
- •23. Открытая транспортная задача и возможность ее решения.
- •24. Блокировки перевозок и ограничения пропускной способности в транспортных задачах. Совместный учет производственных и транспортных затрат.
- •25. Решение транспортной задачи на max целевой функции.
- •26. Задача о «назначениях». Венгерский метод решения задач на минимум.
- •27. Задача о «назначениях». Венгерский метод решения задач на максимум.
- •28. Задача целочисленного программирования и ее решения.
- •29. Алгоритм метода Гомори для решения задач целочисленного программирования.
- •30. Понятие о методе ветвей и границ для решения задачи целочисленного программирования.
- •31. Постановка задачи параметрического программирования.
- •32. Последовательность решения задачи с параметром в целевой функции.
- •33. Описание динамического процесса управления. Примеры экономических задач, представленных в терминах динамического программирования.
- •34. Особенности многошаговых задач, решаемых методом динамического программирования. Принцип оптимальности р. Беллмана.
- •35. Схема решения задачи о распределении средств методом динамического программирования.
- •36. Классификация задач нелинейного программирования. Задачи на безусловный экстремум.
- •38. Общая задача выпуклого программирования. Методы решения задач выпуклого программирования.
- •39. Задача дробно-линейного программирования. Решение задач симплексным методом.
- •Алгоритм решения
- •40. Особенности решения задачи дробно-линейного программирования графическим методом. Возможные варианты графического решения. Асимптотическое решение.
6. Графическое решение задачи линейного программирования с двумя переменными.
Наиболее простым и наглядным методом линейного программирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в неканонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных.
Ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.
1. Составляется система ограничений и целевая функция.
2. Система ограничений приводится к канонической форме.
3. Строятся прямые и определяются ОДР.
Область допустимых решений – пересечение полуплоскостей системы ограничений и условий неотрицательности переменных.
4. Строится линия уровня.
Целевая функция, Z – любое значение – уравнение линии уровня.
Все линии уровня при различных значениях Z || между собой.
5. Строится вектор-градиент.
- Вектор-градиент ┴ линии уровня.
- Определение направления градиента:
А)
Б) С помощью другого значения Z построим еще одну линию уровня.
По взаимному расположению линий уровня определить направление возрастания.
6. Оптимальное решение.
Перемещая линию уровня по направлению вектора-градиента до последнего соприкосновения с ОДР, находим точку min/ max.
7 . Возможные варианты графического решения b
1
)
ОДР огранич., выпукл.
а) оптимальное решение в точке. В – точка max
б
)
оптимальное решение достигается на
отрезке. C
В
С
– оптимальное решение
2) ОДР неогр., выпукл. с конечны числом вершин:
а) оптимальное решение достигается в точке В
б) оптимальное решение достигается на отрезке AB
в) оптимального решения нет, целевая функция не ограничена
а)
3) ОДР точка 4)
ОДР пустое множество
8. Определения n-мерного пространства.
Определение 5. Точка А называется внутренней точкой выпуклой области, если в сколь угодно малой окрестности этой точки содержатся только точки этой области.
Определение 6. Точка В называется граничной точкой выпуклой области, если в сколь угодно малой окрестности этой точки содержатся как точки данной области, так и не принадлежащие ей (рис. 19.3).
Определение 7. Точка С называется угловой точкой выпуклой области, если она является граничной и не лежит внутри отрезка, соединяющего две другие точки этой области (рис. 19.3).
Определение 8. Если область включает все свои граничные точки, то она называется замкнутой.
Выпуклая область может быть ограниченной и неограниченной.
Определение 9. Ограниченной называется область, если существует такое число М > 0, что радиус-вектор , соединяющий начало координат с любой точкой области, по абсолютной величине меньше М, т.е. || ≤ М.
Для этой области все ее точки находятся на конечном расстоянии от начала координат.
Определение 10. Если найдутся точки области, сколь угодно удаленные от начала координат, то область называется неограниченной.
Определение 11. Выпуклая замкнутая ограниченная область, имеющая конечное число угловых точек, называется выпуклым п-мерным многогранником.
Определение 12. Выпуклая замкнутая неограниченная область, имеющая конечное число угловых точек, называется выпуклой п-мерной многогранной областью.