
- •Часть 1
- •Содержание
- •Пояснительная записка
- •Каждое задание включает в себя:
- •Как самостоятельно изучить теоретический материал
- •Как составить опорный конспект
- •3. Как решать задачи (методика д. Пойа)
- •4. Как выполнить домашнюю контрольную работу
- •5. Как подготовить доклад
- •Доклад на тему «_______________________» Дисциплина: Математика Выполнил: студент группы ___
- •Раздел 1. Элементы линейной алгебры
- •Тема 1.1. Матрицы и определители Задание 2. Решение задач на действия над матрицами – 0,5 ч.
- •Транспонирование матриц
- •Пример 1. Транспонируйте матрицу
- •Сложение (вычитание) матриц
- •4. Умножение матриц
- •Пример 4. Найдите произведение матриц и .
- •Раздел 1. Элементы линейной алгебры
- •Тема 1.1. Матрицы и определители Задание 3. Нахождение определителей п-го порядка, миноров и алгебраических дополнений – 1 ч.
- •Третьего порядка:
- •Раздел 1. Элементы линейной алгебры
- •Тема 1.1. Матрицы и определители Задание 4. Нахождение обратной матрицы, вычисление ранга матрицы – 1 ч.
- •Раздел 1. Элементы линейной алгебры
- •Тема 1.2. Системы линейных уравнений Задание 5. Решение систем линейных уравнений по правилу Крамера и методом Гаусса – 1 ч.
- •1. Правило Крамера решения системы n линейных уравнений с n неизвестными.
- •2. Метод Гаусса решения систем линейных уравнений
- •Ответ на вопрос о существовании и количестве решений системы линейных уравнений дает теорема Кронекера-Капелли (критерий совместности системы линейных уравнений):
- •Раздел 2. Элементы аналитической геометрии
- •Тема 2.1. Векторы. Операции над векторами Задание 6. Операции над векторами в координатах – 1 ч.
- •Операции над векторами в координатах
- •Раздел 2. Элементы аналитической геометрии
- •Тема 2.2. Прямая на плоскости. Кривые второго порядка Задание 7. Составление уравнений прямых – 0,5 ч.
- •Раздел 2. Элементы аналитической геометрии
- •Тема 2.2. Прямая на плоскости. Кривые второго порядка Задание 8. Составление уравнений кривых второго порядка и их построение – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.1. Теория пределов. Непрерывность Задание 9. Виды числовых последовательностей. Определение пределов последовательностей – 0 - 0,5 - 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.1. Теория пределов. Непрерывность Задание 10. Вычисление пределов с помощью замечательных пределов, раскрытие неопределенностей – 1 ч.
- •3. Замечательные пределы. Вычисление пределов с помощью замечательных.
- •Раздел 3. Основы математического анализа
- •Тема 3.1. Теория пределов. Непрерывность Задание 11. Решение задач на нахождение и классификацию точек разрыва функции – 1 ч.
- •Раздел 3. Основы математического анализа
- •Раздел 3. Основы математического анализа
- •Тема 3.2. Дифференциальное исчисление функции одной действительной переменной Задание 13. Нахождение производной сложной функции – 0,5 - 1 ч.
- •Формулы дифференцирования сложных функций
- •Раздел 3. Основы математического анализа
- •I. Понятие производной высших порядков
- •II. Правило Лопиталя
- •Раздел 3. Основы математического анализа
- •Тема 3.2. Дифференциальное исчисление функции одной действительной переменной Задание 15. Решение задач на определение промежутков возрастания и убывания, нахождение экстремумов функции – 0,5 - 1ч.
- •Признаки возрастания и убывания функции
- •Достаточные условия существования экстремума
- •Раздел 3. Основы математического анализа
- •Тема 3.2. Дифференциальное исчисление функции одной действительной переменной Задание 16. Определение промежутков выпуклости, вогнутости графика функций, нахождение точек перегиба – 0,5 - 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.2. Дифференциальное исчисление функции одной действительной переменной Задание 17. Нахождение асимптот графика функции – 0,5 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.2. Дифференциальное исчисление функции одной действительной переменной Задание 18. Полное исследование функции и построение графика – 1,5 ч.
- •Критерии оценки выполнения самостоятельной внеаудиторной работы
- •Список рекомендуемой литературы
Как самостоятельно изучить теоретический материал
Прежде чем приступать к решению задач, необходимо внимательно изучить теоретический материал учебника или конспект лекции.
Советуем Вам соблюдать следующие правила:
Правило 1. Внимательно прочтите материал несколько раз. Это не займет много времени, но совершенно необходимо, так как, какими бы большими математическими способностями ни обладал человек, после одного - двух прочтений нового материала обычно невозможно полноценно усвоить его содержание.
При первом прочтении нужно ставить цель - понять, а не запомнить. Обычно для достижения хорошего понимания материала одного прочтения мало. К тому же часто приходится, полистав книгу или конспект лекций, припомнить кое-что из ранее изученного.
А для того, чтобы хорошо запомнить главное (основные утверждения, формулы и т.п.) необходимо второе, а иногда и третье прочтение.
Правило 2. Повторите по памяти формулировку основных правил, понятий, теорем из изученного параграфа. Только тогда вы приобретете знания, ради которых изучается курс.
Правило 3. Разберите типовые примеры и решение ключевых задач по данной теме. Тогда Вы поймете, как усвоенные теоретические знания могут применяться в различных ситуациях.
Правило 4. Ответьте на контрольные вопросы, не заглядывая в книгу или в тетрадь. Обычно контрольные вопросы приведены в конце каждого параграфа учебника. Попробуйте оценить свои знания, сравнив свой ответ с текстом книги или конспекта лекции.
Правило 5. Самостоятельно решите предложенные задачи по данной теме.
Только при выполнении всех этих правил Вы можете быть уверены, что теоретический материал по данной теме Вами усвоен.
Как составить опорный конспект
Выпиши тему, по которой необходимо составить опорный конспект.
Внимательно изучи материал учебника, рекомендованного преподавателем (см. рекоменации 1). Выдели ключевые моменты, раскрывающие данную тему.
Составь план темы, по которой нужно выполнить опорный конспект, включающий в себя:
основные понятия;
основные формулы и теоремы.
Проработай основные понятия темы:
дай определение каждого понятия и запиши его;
вычлени ведущие свойства понятия, по которым оно отличается от других понятий;
приведи примеры, конкретизирующие данное понятие, и запиши их;
продумай область применения понятия.
Проработай теоремы и формулы, встречающиеся в данной теме:
запиши формулировку теоремы;
выпиши доказательство теоремы;
проиллюстрируй на примерах приложение формулы или теоремы к решению задач.
Ответь на контрольные вопросы, предложенные в учебнике.
3. Как решать задачи (методика д. Пойа)
Понимание постановки задачи |
|
Нужно ясно понять задачу |
Внимательно прочтите условие задачи. Четко определите для себя, что дано в условии задачи, а что требуется найти. Спросите себя, что означают понятия, о которых идет речь в задаче. И ответьте себе. Если же ответить сразу не удается, то ответ надо поискать, например, в теоретической части курса. Иначе для Вас задача может оказаться неразрешимой. |
Составление плана решения |
|
Нужно найти связь между данными и неизвестными. В конечном итоге нужно перейти к плану решения. |
Ответьте на вопрос: как взаимосвязаны понятия в задаче? Именно благодаря взаимосвязи понятий задачу удается решить. Чаще всего такие взаимосвязи предстают в виде формул, формулировок теорем, а некоторые из них задаются формулировкой задачи. Знаете ли Вы теорему (теоремы), формулы, которые помогут в решении? Известна ли Вам похожая задача? Нельзя ли использовать метод ее решения? Все ли данные нами были использованы? Приняты ли во внимание все существенные понятия, содержащиеся в задаче? |
Осуществление плана |
|
Нужно осуществить план решения |
Осуществляя план решения, контролируйте каждый свой шаг. Ясно ли вам, что предпринятый вами шаг правилен? Сумеете ли вы доказать, что он правильный? |
Взгляд назад (изучение полученного решения) |
|
Нужно изучить найденное решение |
Нельзя ли проверить найденный результат? Нельзя ли проверить ход решения? Нельзя ли получить тот же результат иначе? Нельзя ли увидеть его сразу? |
Помните! Вы должны не только решить задачу, но и грамотно оформить ее решение.
Оформление решения задачи включает в себя:
запись исходных данных;
что требуется найти по условию задачи;
собственно решение задачи с указанием используемых формул и теорем;
запись ответа.