
- •11. Делители напряжения и тока. Резистивный мост. Делитель напряжения
- •12. Основные понятия теории линейных электрических цепей переменного тока
- •24. Классический метод анализа переходных процессов. Круга первого порядка Классический метод анализа переходных процессов:
- •25. Классический метод анализа переходных процессов. Круга второго порядка
- •32. Типы проводимости полупроводника 1. Электронная проводимость
- •2. Дырочная проводимость
- •33. Примесная проводимость полупроводников. Электронно-дырочный переход
- •34. Полупроводниковые диоды и базовые диодные устройства
- •35. Светодиоды и фотодиоды. Применение в полиграфических технологиях
- •36. Структура и принцип действия биполярного транзистора
- •37. Биполярный транзистор. Схемы включения и их параметры
- •38. Вольт-амперные характеристики биполярного транзистора
- •39. Основные режимы работы биполярного транзистора
- •40. Определение дифференциальных н-параметров биполярного транзистора
- •41. Полевой транзистор. Структура и принцип действия
- •42. Основные схемы транзисторных каскадов усиления и их назначение
- •45. Интегральные микросхемы. Структура и технология изготовления
38. Вольт-амперные характеристики биполярного транзистора
39. Основные режимы работы биполярного транзистора
В зависимости от сочетания знаков и значений напряжений на p-n-переходах транзистора различают следующие режимы его работы:
а) активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный переход – обратное;
б) режим отсечки – на оба перехода поданы обратные напряжения (транзистор заперт);
в) режим насыщения – на оба перехода поданы прямые напряжения (транзистор полностью открыт);
г) инверсный активный режим – напряжение на эмиттерном переходе обратное, на коллекторном – прямое.
40. Определение дифференциальных н-параметров биполярного транзистора
41. Полевой транзистор. Структура и принцип действия
Полевой транзистор — полупроводниковый прибор, в котором ток изменяется в результате действия «перпендикулярного» току электрического поля, создаваемого входным сигналом на затвор.
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).
42. Основные схемы транзисторных каскадов усиления и их назначение
43. Операционные усилители. Операционный усилитель - это электронный усилитель напряжения с высоким коэффициентом усиления, имеющий дифференциальный вход и обычно один выход. Напряжение на выходе может превышать разность напряжений на входах в сотни или даже тысячи раз. Операционные усилители являются наиболее востребованными приборами среди современных электронных компонент, они находят своё применение в потребительской электронике, применяются индустрии и в научных приборах. Многие стандартные микросхемы операционных усилителей стоят всего несколько центов. Но некоторые модели гибридных или интегрированных операционных усилителей со специальными характеристиками, выпускаемые мелкими партиями, могут стоить более сотни долларов. Операционные усилители обычно выпускаются как отдельные компоненты, а так же они могут являться элементами более сложных электронных схем. Принцип действия:
Дифференциальные входы усилителя состоят из двух выводов - V+ и V-, идеальный операционный усилитель усиливает только разницу напряжений между двумя этими входами, эта разница называется дифференциальным напряжением на входе. Напряжение на выходе операционного усилителя определяется формулой
Vout = AOL (V+ - V-)
где V+ - напряжение на неинвертирующем (прямом) входе, V- - напряжение на инвертирующем (инверсном) входе, и AOL - коэффициент усиления усилителя с разомкнутой петлёй обратной связи (то есть обратная связь от выхода ко входу отсутствует).
Обозначения на схеме: Условные обозначения на схеме для операционного усилителя, изображённого на рисунке справа, следующие:
V+ - неинвертирующий вход
V- - инвертирующий вход
Vout - выход
VS+ - плюс напряжения питания
VS- - минус напряжения питания
Условное графическое обозначение операционного усилителя 44. Генераторы гармонических колебаний. Условия возникновения гармонических колебаний.
Генераторы гармонических колебаний представляют собой устройства из частотно-избирательной цепи и активного элемента. По типу частотно-избирательной цепи они делятся на LC- и RC-генераторы.
Цепи положительной обратной связи выполняют две функции: сдвиг сигнала по фазе для получения петлевого сдвига близкого к n*2π и фильтра, пропускающего нужную частоту. Функции сдвига фазы и фильтра могут быть распределены на две составные части генератора — на усилитель и на цепи положительной обратной связи или целиком возложены на цепи положительной обратной связи. В цепи положительной обратной связи могут стоять усилители. Необходимыми условиями для возникновения гармонических незатухающих колебаний являются: 1. петлевой сдвиг фазы равный n*360°±90°, 2. петлевое усиление >1, 3. рабочая точка усилительного каскада в середине диапазона входных значений. Необходимость третьего условия. Петлевой сдвиг фазы и в триггере и в генераторе равен около 360°. Петлевое усиление в триггере почти вдвое больше, чем в генераторе, но триггер не генерирует, так как рабочие точки каскадов в триггере смещены на края диапазона входных значений и эти состояния в триггере устойчивы, а состояние со средней величиной входных значений — неустойчиво. Такой характеристикой обладает компаратор. В гармоническом генераторе среднее состояние устойчивое, а отклонения от среднего состояния неустойчивые.