- •Теория вероятностей и математическая статистика
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 5.
- •Вопрос 6.
- •Вопрос 7.
- •Вопрос 8.
- •Вопрос 9.
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Вопрос 14.
- •Вопрос 15.
- •Вопрос 16.
- •Вопрос 17.
- •Вопрос 18.
- •Вопрос 19.
- •25. Определение и виды вариационных рядов. Графическое изображение вариационных рядов распределения.
Вопрос 2.
Вероятность события количественно характеризует возможность (шанс) осуществления этого события в ходе случайного эксперимента. В данном параграфе мы начинаем изучать возможности, предоставляемые теорией вероятности для сравнительного анализа ситуаций, возникающих при различных комбинациях равновероятных событий.
Представим,
что у нас проводится эксперимент с
пространством из n
элементарных исходов, которые
равновероятны. Элементарные исходы
являются несовместными событиями
(напомним, что несовместные события -
это те, которые не могут произойти
одновременно), поэтому вероятность
каждого из них равна 1/n.
Допустим, нас интересует событие А,
которое наступает только при реализации
благоприятных элементарных исходов,
количество последних m
(m< n). Тогда,
согласно классическому определению,
вероятность такого события:
.
Для любого события А справедливо неравенство: 0 < P(A) <1.n>.
Пример. Лотерея состоит из 1000 билетов, среди них 200 выигрышных. Наугад вынимается один билет из 1000. Чему равна вероятность того, что этот билет выигрышный?
Решение:
различных исходов в этом примере 1000
(n=1000). В интересующее нас событие А входят
200 исходов (m=200). Таким образом,
.
Вопрос 3.
Теорема сложения: Вер-ть суммы двух несовм-х соб-й = сумме вер-тей этих соб. P(A+B+…+К)=P(A)+P(B)+…+Р(К)
Доказательство:
Пусть в рез-те испытания из общего
числа n равновозможных и
несовм-х исходов испытания соб-ю А
благоприятствует m1
случаев, а соб-ю В – m2
случаев. Согласно классич определению
P(A)=m1\n,
P(В)=m2\n.
Т.к соб А и В несовм-е, то ни 1 из случаев,
благоприят-х 1 из этих соб-й, не благоприят-т
другому. Поэтому событию А+В будет
благоприятств-ть m1+m2
случаев, следовательно:
Следствие 1: Сумма вер-ей событий, образующих полную группу, равна 1: P(A)+P(B)+…+Р(К)=1, Если события А,В,…,К образуют полную группу, то они единственно возможные и несовместимые.
ТК события А,В,…,К – единственно возможные, то событие А+В+…+К, состоящее в появлении в рез-те испытания хотя бы одного из этих событий, явл-ся достоверным, его вер-ть = 1 : Р(А+В+…+К)=1 В силу т\ч события А,В,…,К – несовместимые, к ним применима теорема сложения: Р(А+В+…+К)=Р(А)+Р(В)+…+Р(К)=1
Следствие 2: Сумма вер-ей противоположных событий = 1 Р(А)+Р(А )=1 Это следует из т\ч противоположные события образуют полную группу.
Пример 1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара. Решение. Появление цветного шара означает появление либо красного, либо синего шара.
Вероятность появления красного шара (событие А) Р (А) = 10 / 30 = 1 / 3. Вероятность появления синего шара (событие В) Р (В) = 5 / 30 = 1 / 6. События А и В несовместны (появление шара одного цвета исключает появление шара другого цвета), поэтому теорема сложения применима. Искомая вероятность P (A + B) = P (A) + P (B) = l / 3 + l / 6 = l / 2.
Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р (АВ) = Р (А) РA (В)
Доказательство: З а м е ч ан и е. Применив формулу (*) к событию ВА, получим Р (ВА) = Р (В) Рв (А), или, поскольку событие ВА не отличается от события АВ, -> Р(АВ) = Р (В) Рв (А)
Сравнивая формулы Р (АВ) = Р (А) РA (В) и Р(АВ) = Р (В) Рв (А), заключаем о справедливости равенства
Р (А) Ра (В) = Р (В) Рв (А)
С л е д с т в и е. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:
где
явл
вероятностью события An,
вычисленной в предположении, что события
А1,А2,...,
Аn
— 1 наступили. В
частности, для трех событий Р (AВС) = Р
(А) РA
(В) РAB
(С). Порядок, в котором расположены
события, может быть выбран любым, т. е.
безразлично какое событие считатьпервым,
вторым и т. д.
Пример 1. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков — конусный, а второй — эллиптический.
Р е ш е н и е. Вероятность того, что первый валик окажется конусным (событие A), Р (А) = 3 / 10. Вероятность того, что второй валик окажется эллиптическим (событие В), вычисленная в предположении, что первый валик — конусный, т. е. условная вероятность РA (В) = 7 / 9.
По теореме умножения, искомая вероятность Р (АВ) = Р (А) РA (В) = (3 / 10) * (7 / 9) = 7 / 30. Заметим, что, сохранив обозначения, легко найдем: Р (В) = 7 / 10, РB (А) = 3 / 9, Р (В) РB (А) = 7 / 30, что наглядно иллюстрирует справедливость равенства (***).
