Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
INFORMATIKA_1_1.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
881.19 Кб
Скачать

44)Численное решение нелинейного уравнения. Этапы решения.

f(x)=0, где f(x) – произвольная функция, наиболее распространенная в инж. Практике задача по отысканию корней.

Выбор метода решения зависит от вида f(x). Для численного решения нелинейных уравнений применяются только итерационные методы.

Задача нахождения корней состоит из 2 этапов:

1. Отделение корней – определение числа корней и их примерного расположения на числовой оси.

Наиболее применим графический способ отделения корней, т. е. отыскание точек пересечения ф. f(x) с осью абсцисс:

[ a;b] – интервал изоляции корня. Для каждого корня уравнения определяется интервал его изоляции [a;b]. На отрезке [a;b] должен находиться 1 корень.

2. Уточнение корней – вычисление каждого корня с заданной степенью точности.

Классификация методов уточнения корней :

1) Метод половинного деления отрезка(дихотомии).

О трезок [a;b], содержащий единственный корень, делят пополам, отбрасывают ту половину, где нет корня. Процесс повторяется до тех пор, пока длина отрезка не станет меньше заданной погр. E.

Достоинства: прост и надежен, всегда сводится к решению независимо от вида ф. f(x). Недостаток: самый медленный из всех известных методов уточн. Корня.

2) Метод хорд.

П остроение последовательных хорд, в качестве приближений к корню принимаются значения их пересечения с осью абсцисс.

Достоинство: простота. Недостаток: быстрота сходимости к решению сильно зависит от вида ф. f(x).

3 ) Метод касательных( метод Ньютона)

В качестве приближения к корню ищется точка пересечения касательной с осью абсцисс.

Достоинство: высокая скорость. Недостатки: ограничения на вид ф. (должна быть дифференцируема, f’(x) и f’’(x) не должны менять знак на интервале уточнения корня).

4) Комбинированный метод – объединение методов хорд и касательных.

П риближение к корню на каждой итерации происходит одновременно с 2 сторон интервала [a;b]. Одной стороны строится хорда, а с другой касательная.

Достоинство: работает быстрее, чем методы хорд и касательных. Недостатки: f(x) должна быть дифференцируема; f’(x) иf’’(x) не должны менять знак на интервале уточнения корня; трудности с дифф-ем f(x).

5) Метод простой итерации.

Исходное нелинейное уравнения заменяется равносильным уравнением x=g(x)и с помощью сходящегося итерационного процесса происходит приближение к корню, пока не достигнет предела заданной погрешности Е.

45)Уточнение корня нелинейного уравнения методом половинного деления(дихотомии). Алгоритм.

Требуется вычислить корень уравнения f(x)=0 на [a;b] с заданной погрешностью Е.

Отрезок [a;b], содержащий единственный корень, делят на 2 половины, отбрасывают ту из них, где нет корня. Процесс продолжается до тех пор, пока длина отрезка не станет меньше заданной погрешности Е.

Алгоритм метода:

4 6)Уточнение корня нелинейного уравнения методом хорд. Схема алгоритма.Требуется вычислить корень уравнения f(x)=0 на [a,b] с заданной погрешностью е. Геометр-ки метод основан на построении последовательности хорд. Ур-е хорды . В данном методе процесс итерации состоит в том, что в качестве приближений к корню уравнение f(x)=0 принимаются значения х1, х2… хi точек пересечения хорды АВ с осью абсцисс. Если f(a)>0 , то левая граница a неподвижна, х0=b и из урав. хорды получим: Если f(a)<0, то правая граница b неподвижна, x0=a. .

Алгоритм:

г де Det_x

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]