
- •Комплексные числа. Алгебраическая, тригонометрическая, геометрическая формы представления. Сопряжение. Формула Муавра.
- •Геометрическая модель
- •Доказательство
- •Матрицы. Действия над матрицами. Свойства.
- •Операции над матрицами Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •3. Линейно-зависимые вектора.
- •4. Детерминант. Его свойства.
- •Описание метода
- •7. Линейные пространства
- •8. Евклидово пространство. Скалярное произведение, его свойства.
- •Свойства
- •9. Нормированное пространство. Норма.
- •Норма вектора
- •10. Векторное произведение. Свойства.
- •Свойства Геометрические свойства векторного произведения
- •Алгебраические свойства векторного произведения
- •12. Бесконечно большая последовательность. Свойства. Бесконечно большая последовательность
- •14. Сходящиеся последовательности и их свойства.
- •15. Сравнение функций
- •16. Монотонные последовательности, их сходимость. Теорема о монотонной последовательности.
- •17. Односторонний предел.
- •18. Точки разрыва. Классификация, примеры.
- •Свойства производной
- •22. Табличные производные с доказательством.
- •23. Производные обратных тригонометрических и гиперболических функций
- •25. Производные и дифференциалы высших порядков
- •27. Экстремумы функции
- •Определения Для функций
14. Сходящиеся последовательности и их свойства.
Определение. Последовательность {xn} называется сходящейся, если существует такое вещественное число а, что последовательность {xn−a} является бесконечно малой.
Если последовательность {xn→a } является сходящейся и имеет своим пределом число a, то символически это записывают так: lim(n→∞) xn=a или xn→a при n→∞
Определение. Последовательность {xn} называется сходящейся, если существует такое вещественное число a, что для любого положительного вещественного числа ε найдется номер N(ε) такой, что при всехn>Nэлементы xn этой последовательности удовлетворяют неравенству ∣xn−a∣<ε При этом число a называется пределом последовательности. Неравенство (5) можно записать в эквивалентной форме −ε<xn−a<+ε или, a−ε<xn<a+ε . (5') Определение. Последовательность {xn} называется сходящейся, если существует такое число a, что в любой ε-окрестности точки aнаходятся все элементы последовательности {xn} начиная с некоторого номера (зависящего от ε). Теорема 1. Сходящаяся последовательность имеет только один предел. Доказательство. Предположим, что два вещественных числа а и b являются пределами сходящейся последовательности {xn}. xn=a+an и xn=b+bn, где {an} и {bn} - некоторые бесконечно малые последовательности. Получим an−bn=b−a . Последовательность {an−bn} является бесконечно малой, а в силу равенства an−bn=b−a все элементы этой бесконечно малой последовательности равны одному и тому же вещественному числуb−a . Число b−a равно нулю, т. е. b=a. Теорема доказана.
Теорема 2. Всякая сходящаяся последовательность является ограниченной.
Доказательство. Пусть {xn} - сходящаяся последовательность и a ее предел. Фиксируем некоторое положительное число ε и по нему номер N такой, что ∣xn−a∣<ε при n≥N или, a−ε<xn<a+ε при n≥N . Обозначим через A наибольшее из следующих (N+1) чисел: ∣a−ε∣,∣a+ε∣,∣ ∣ x1∣ ∣ ,∣ ∣ x2∣ ∣ ,...,∣ ∣ хN−1∣ ∣ . Тогда, очевидно, ∣xn∣≤A для всех номеров n, а это и доказывает ограниченность последовательности{xn}. Теорема доказана.
Следствие 1. Не всякая ограниченная последовательность является сходящейся. Так, например, посл. 0,1,0,1,...,0,1, ... является ограниченной, но не является сходящейся. В самом деле, обозначим n-й член этой последовательности символом xn и предположим, что эта последовательность сходится к некоторому пределу a. Но тогда каждая из последовательностей {xn+1−a} и {xn−a} являлась бы бесконечно малой. Стало быть, являлась бы бесконечно малой и разность этих последовательностей {xn+1−xn} а этого быть не может в силу того, что ∣ ∣ xn+1−xn∣ ∣ =1 для всех номеров n. Последовательность {an} называется бесконечно малой, если для любого положительного вещественного числа ε найдется номер N(ε) такой, что при всех n>Nэлемент an последовательности удовлетворяет неравенству ∣an∣<ε .
Теорема 3. Сумма сходящихся последовательностей {xn} и {yn} представляет собой сходящуюся последовательность, предел которой равен сумме пределов последовательностей {xn} и {yn}. Доказательство. Предположим, что последовательности {xn} и {yn} сходятся к пределам а и b соответственно. Тогда в силу того что xn=a+an будут справедливы соотношения xn=a+an,yn=b+bn, (6), в которых anи bn представляют собой элементы некоторых бесконечно малых последовательностей {an}и {bn}. Из (6) вытекает, что(xn+yn)−(a−b)=an+bn . (7) Т.к. сумма {an+bn} двух бесконечно малых последовательностей {an} и {bn} представляет собой бесконечно малую последовательность, то из соотношения (7) вытекает в силу определения, что последовательность {xn+yn} сходится и вещественное число a+b является ее пределом. Теорема доказана.
Теорема 4. Разность сходящихся последовательностей {xn} и {yn} представляет собой сходящуюся последовательность, предел которой равен разности пределов последовательностей {xn} и {yn} Доказательство этой теоремы аналогично доказательству Теоремы 3, только вместо соотношения (7) мы получим соотношение (xn−yn)−(a−b)=an−bn .
Теорема 5. Произведение сходящихся последовательностей {xn} и {yn} представляет собой сходящуюся последовательность, предел которой равен произведению пределов последовательностей {xn} и {yn}. Доказательство. Предположим, что последовательности {xn} и {yn}сходятся к пределам a и bсоответственно. Тогда для элементов этих последовательностей справедливы (6), перемножая которые, мы получим xn·yn=a·b+abn+ban+an·bn или, xnyn−a·b=abn+ban+an·bn (8) Лемма 1. Если последовательность {yn} сходится к отличному от нуля пределу b, то, начиная с некоторого номера, определено частное {1yn} последовательностей {\{}1{\}} и {yn}, которое представляет собой ограниченную последовательность.
Теорема 6. Частное двух сходящихся последовательностей {xn} и {yn}, предел второй из которых отличен от нуля, определено, начиная с некоторого номера, и представляет собой сходящуюся последовательность, предел которой равен частному пределов последовательностей {xn} и {yn}. Доказательство. Предположим, что последовательности {xn} и {yn} сходятся к пределам a и bсоответственно. В силу леммы 1 найдется номер N такой, что при n>N элементы yn нe обращаются в нуль, определена последовательность {1yn} и эта последовательность является ограниченной. Начиная с номера N, мы и будем рассматривать частное {ynxn} . В силу определения достаточно доказать, что последовательность {ynxn−ba} является бесконечно малой. Будем исходить из тождества ynxn−ba=yn·bxn·b−yn·a (9) Т.к. для элементов xn и yn справедливы (6), то
n·b−yn·a=(a+an)·bn−(b+bn)·an=anb−bna
Подставляя (10) в (9), получим ynxn−ba=1yn(an−babn) (11) Остается доказать, что в правой части (11) стоит элемент бесконечно малой последовательности, но это сразу вытекает из того, что последовательность {1yn} (в силу леммы 1) является ограниченной, а последовательность {an−babn} (как разность двух бесконечно малых) является бесконечно малой последовательностью. Теорема доказана.