Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
russ.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2 Mб
Скачать

4. Детерминант. Его свойства.

Детерминант - одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы. В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.

Определитель матрицы А обозначается как: det(A)|А| или Δ(A).

Для матрицы первого порядка детерминантом является сам единственный элемент этой матрицы:

Для матрицы   детерминант определяется как

Для матрицы   определитель задаётся рекурсивно:

,    где   — дополнительный минор к элементу  . Эта формула называется разложением по строке.

В частности, формула вычисления определителя матрицы   такова:

  • Определитель — кососимметричная полилинейная функция строк (столбцов) матрицы. Полилинейность означает, что определитель линеен по всем строкам (столбцам):   , где  и т. д. — строчки матрицы,   — определитель такой матрицы.

  • При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится.

  • Если две строки (столбца) матрицы совпадают, то её определитель равен нулю.

  • Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю.

  • Если переставить две строки (столбца) матрицы, то её определитель умножается на (-1).

  • Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

  • Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю.

  • Сумма произведений всех элементов любой строки на их алгебраические дополнения равна определителю.

  • Сумма произведений всех элементов любого ряда на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю.

  • Определитель произведения квадратных матриц одинакового порядка равен произведению их определителей (cм. Также формулу Бине-Коши).

  • С использованием индексной нотации определитель матрицы 3×3 может быть определён с помощью символа Леви-Чивита из соотношения:

5. Метод Крамера.

Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно).

Описание метода

Для системы   линейных уравнений с   неизвестными (над произвольным полем)

с определителем матрицы системы  , отличным от нуля, решение записывается в виде

(1-ый столбец матрицы системы заменяется столбцом свободных членов). В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что   отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы   и  , либо набор   состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

Система линейных уравнений:

Определители:

Решение:

Пример:

Определители:

6. Обратная матрица. Ее свойства.

Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:

Свойства обратной матрицы

  • , где   обозначает определитель.

  •  для любых двух обратимых матриц   и  .

  •  где   обозначает транспонированную матрицу.

  •  для любого коэффициента   .

  • Если необходимо решить систему линейных уравнений  , (b — ненулевой вектор) где   — искомый вектор, и если   существует, то  . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться следующим способом:

С помощью матрицы алгебраических дополнений

 — транспонированная матрица алгебраических дополнений;

Полученная матрица A−1 и будет обратной. Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.

Иначе говоря, обратная матрица равна единице, делённой на определитель исходной матрицы и умноженной натранспонированную матрицу алгебраических дополнений элементов исходной матрицы.

Пример

Матрица 2х2

Обращение матрицы 2х2 возможно только при условии, что  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]