Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
russ.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
2 Mб
Скачать

Определения Для функций

Дифференциал функции   в точке   может быть определён как линейная функция

где   обозначает производную   в точке  .

Таким образом   есть функция двух аргументов  .

Дифференциал может быть определён напрямую, т.е., без привлечения определения производной как функция  линейно зависящая от   и для которой верно следующее соотношение

Основные дифференциалы:

Дифференциал функции обладает свойствами, аналогичными свойствам производной.

  1. Дифференциал постоянной равен нулю: dc = 0, с = const.

  2. Дифференциал суммы дифференцируемых функций равен сумме дифференциалов слагаемых:

d(u+v)=du + dv

Следствие. Если две дифференцируемые функции отличаются постоянным слагаемым, то их дифференциалы равны

d(u+c) = du (c= const).

  1. Дифференциал произведения двух дифференцируемых функций равен произведению первой функции на дифференциал второй плюс произведение второй на дифференциал первой:

d(uv) = udv + vdu.

Следствие. Постоянный множитель можно выносить за знак дифференциала

d(cu) = cdu (с = const).

  1. Дифференциал частного u/v двух дифференцируемых функций и = и(х) и v = v(x) определяется формулой

  1. Свойство независимости вида дифференциала от выбора независимой переменной (инвариантность формы дифференциала): дифференциал функции равен произведению производной на дифференциал аргумента независимого от того, является ли этот аргумент независимой переменной или функцией другой независимой переменной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]