Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
russ.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2 Mб
Скачать
  1. Комплексные числа. Алгебраическая, тригонометрическая, геометрическая формы представления. Сопряжение. Формула Муавра.

Комплексные числа - расширение поля вещественных чисел. Любое комплексное число может быть представлено как формальная сумма  , где   и   — вещественные числа,   —мнимая единица.

Алгебраическая форма

Запись комплексного числа   в виде  ,  , называется алгебраической формой комплексного числа.

Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что  ):

Тригонометрическая и показательная формы

Если вещественную   и мнимую   части комплексного числа выразить через модуль   и аргумент   ( ), то всякое комплексное число  , кроме нуля, можно записать в тригонометрической форме

Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:

где   — расширение экспоненты для случая комплексного показателя степени.

Отсюда вытекают следующие широко используемые равенства:

Геометрическая модель

Рассмотрим плоскость с прямоугольной системой координат. Каждому комплексному числу   сопоставим точку плоскости с координатами   (а также радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется комплексной. Вещественные числа на ней занимают горизонтальную ось, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями.

Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент).

В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».

Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство.

Сопряжённые числа

Если комплексное число  , то число   называется сопряжённым (или комплексно сопряжённым) к   (обозначается также  ). На комплексной плоскости сопряжённые числа получаются зеркальным отражением друг друга относительно вещественной оси. Модуль сопряжённого числа такой же, как у исходного, а их аргументы отличаются знаком.

Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.

  •  (сопряжённое к сопряжённому есть исходное).

Формула Муавра  для комплексных чисел   утверждает, что для любого 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]