
- •Комплексные числа. Алгебраическая, тригонометрическая, геометрическая формы представления. Сопряжение. Формула Муавра.
- •Геометрическая модель
- •Доказательство
- •Матрицы. Действия над матрицами. Свойства.
- •Операции над матрицами Умножение матрицы на число
- •Сложение матриц
- •Умножение матриц
- •3. Линейно-зависимые вектора.
- •4. Детерминант. Его свойства.
- •Описание метода
- •7. Линейные пространства
- •8. Евклидово пространство. Скалярное произведение, его свойства.
- •Свойства
- •9. Нормированное пространство. Норма.
- •Норма вектора
- •10. Векторное произведение. Свойства.
- •Свойства Геометрические свойства векторного произведения
- •Алгебраические свойства векторного произведения
- •12. Бесконечно большая последовательность. Свойства. Бесконечно большая последовательность
- •14. Сходящиеся последовательности и их свойства.
- •15. Сравнение функций
- •16. Монотонные последовательности, их сходимость. Теорема о монотонной последовательности.
- •17. Односторонний предел.
- •18. Точки разрыва. Классификация, примеры.
- •Свойства производной
- •22. Табличные производные с доказательством.
- •23. Производные обратных тригонометрических и гиперболических функций
- •25. Производные и дифференциалы высших порядков
- •27. Экстремумы функции
- •Определения Для функций
Комплексные числа. Алгебраическая, тригонометрическая, геометрическая формы представления. Сопряжение. Формула Муавра.
Комплексные
числа - расширение поля вещественных
чисел.
Любое
комплексное число может быть представлено
как формальная сумма
,
где
и
—
вещественные числа,
—мнимая
единица.
Алгебраическая форма
Запись
комплексного числа
в
виде
,
,
называется алгебраической
формой комплексного
числа.
Сумма
и произведение комплексных чисел могут
быть вычислены непосредственным
суммированием и перемножением таких
выражений, как обычно раскрывая скобки
и приводя подобные, чтобы представить
результат тоже в стандартной форме (при
этом надо учесть, что
):
Тригонометрическая и показательная формы
Если
вещественную
и
мнимую
части
комплексного числа выразить через
модуль
и
аргумент
(
,
),
то всякое комплексное число
,
кроме нуля, можно записать в тригонометрической
форме
Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:
где
—
расширение экспоненты для
случая комплексного показателя степени.
Отсюда вытекают следующие широко используемые равенства:
Геометрическая модель
Рассмотрим
плоскость с прямоугольной
системой координат.
Каждому комплексному числу
сопоставим
точку плоскости с координатами
(а
также радиус-вектор,
соединяющий начало координат с этой
точкой). Такая плоскость называется комплексной.
Вещественные числа на ней занимают
горизонтальную ось, мнимая единица
изображается единицей на вертикальной
оси; по этой причине горизонтальная и
вертикальная оси называются
соответственно вещественной и
мнимой осями.
Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент).
В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».
Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство.
Сопряжённые числа
Если
комплексное число
,
то число
называется
сопряжённым (или
комплексно сопряжённым) к
(обозначается
также
).
На комплексной плоскости сопряжённые
числа получаются зеркальным отражением
друг друга относительно вещественной
оси. Модуль сопряжённого числа такой
же, как у исходного, а их аргументы
отличаются знаком.
Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.
(сопряжённое к сопряжённому есть исходное).
Формула
Муавра
для комплексных чисел
утверждает,
что
для любого