- •1.Квадратные матрицы и их свойства. Определители и их свойства, вычесление определителей второго и третьего порядка. Минор и алгебраическое дополнение.
- •2.Системы линейных алгебраических уравнений. Правило Крамера. Метод Гаусса.
- •4.Теорема Кронека-Капелли. Решение систем алгебраических уравнений матричным способом.
- •5. Собственное значение и собственные векторы матрицы.
- •6. Определение вектора. Модуль вектора. Определение компланарных, коллинеарных и равных векторов.
- •7. Проекция вектора на ось. Разложение вектора на ось по единичным векторам.
- •8. Умножение вектора на число. Сложение и вычитание вектора.
- •9. Расстояние между двумя точками в прямоугольной системе координат. Деление отрезка в данном отношении.
- •10. Скалярное произведение 2-х векторов и его свойства. Угол между 2-мя векторами.
- •11. Векторное произведение. Его свойства. Площадь δ и s.
- •12. Формулы векторного произведение векторов, заданных проекциями. Условие коллинеарности векторов.
- •Смешанное произведение 3-х векторов. Геометрическое толкование. Признак компланарности 3-х векторов.
- •Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
- •Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
- •Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
- •14.Уравнение прямой с угловыми коэффициентом и проходящие через заданную точку.
- •15.Уравнение прямой, проходящей через две заданные точки
- •16. Общее уравнение прямой линии. Угол между двумя прямыми.
- •17. Полярная система координат на плоскости.
- •18. Нормальное уравнение прямой. Расстояние от данной точки до данной прямой.
- •19. Окружность, ее каноническое и общее уравнение
- •20.Эллипс. Вывод канонического уровнения эллипса, его характеристики.
- •21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.
- •22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
- •23. Эллипс. Определение. Вывод канонического уравнения.
- •24. Гипербола. Определение. Вывод канонического уравнения.
- •25.Переменные и постоянные величины множества. Функции. Область определения, способы задания. График функции. Приращение функции.
- •26.Предел переменной величины (последовательности). Предел функции при непрерывном стремлении аргументы к конечному значению или к бесконечности. Свойства функций, имеющих предел.
- •28.Теоремы о пределах суммы, произведения и частного, признаки существования предела: а) для монотонной ограниченной последовательности; б) для функции, заключенной между двумя функциями.
- •29.Первый замечательный предел.
- •30.Второй замечательный предел. Натуральные логарифмы. Применение замечательных пределов к нахождению функции.
- •32.Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.
- •33.Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.
- •34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.
- •Производная обратной функции
- •Производная сложной функции
- •Производные тригонометрических функций
- •Правила дифференцирования суммы, произведения, частного функции. Производные сложных функций.
- •36. Функции заданные параметрическими уравнениями их дифференцирование. Теоремы Коши, Лагранжа, Роля. Правило Лопиталя.
- •38. . Экстремумы функции. Необходимый признак экстремума. Достаточный признак экстремума, использующие первую и вторую производную.
- •39. Исследование условий и построение графиков.
- •40.Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры. Вертикальная
- •[Править]Горизонтальная
- •[Править]Наклонная
- •[Замечание
32.Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.
Производная. Рассмотрим
некоторую функцию y = f ( x )
в двух точках x0
и x0 +
: f ( x0 )
и f (x0 +
). Здесь через
обозначено некоторое малое изменение
аргумента, называемоеприращением
аргумента;
соответственно разность между
двумя значениями
функции: f ( x0 +
) f ( x0 ) называется приращением
функции. Производной функции y = f ( x )
в точке x0 называется
предел:
Если этот предел существует, то функция f ( x ) называется дифференцируемой в точке x0 . Производная функции f ( x ) обозначается так:
Геометрический смысл производной. Рассмотрим график функции y = f ( x ):
Из рис.1 видно, что для любых двух точек A и B графика функции:
где
- угол
наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.
Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f ( x0 ) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0 ) имеет вид:
y = f ’( x0 ) · x + b .
Чтобы найти b, воспользуемся тем, что касательная проходит через точку A:
f ( x0 ) = f ’( x0 ) · x0 + b ,
отсюда, b = f ( x0 ) – f ’( x0 ) · x0 , и подставляя это выражение вместо b, мы получим уравнение касательной:
y = f ( x0 ) + f ’( x0 ) · ( x – x0 ) .
Механический
смысл производной. Рассмотрим
простейший случай: движение материальной
точки вдоль координатной оси, причём
закон движения задан: координата x
движущейся точки –известная
функция x ( t )
времени t.
В течение
интервала времени от t0
до t0 +
точка
перемещается на расстояние: x ( t0 +
) x ( t0 )
=
,
а её средняя
скорость равна: va =
.При
0
значение средней скорости стремится к
определённой величине, которая
называетсямгновенной
скоростью v ( t0 )
материальной точки в момент времени t0 .
Но по определению производной мы имеем:
отсюда, v ( t0 ) = x’ ( t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ).
33.Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.
Производная суммы (разности) функций
П
роизводная
суммы (разности) двух дифференцируемых
функций равна сумме (разности) производных
этих функций:
Производная произведения функций.
П
усть
u(x) и u(x) - дифференцируемые функции. Тогда
произведение функций u(x)v(x) также
дифференцируемо и производная произведения
двух функций не равна произведению
производных этих функций.
Производная частного функций.
П
усть
u(x) и u(x) - дифференцируемые функции.
Тогда, если v(x) ≠ 0, то производная частного
этих функций вычисляется по формуле
Г
иперболическими
синусом, косинусом, тангенсом и котангенсом
называются функции :
Областью определения функций shx , chx , thx является вся числовая ось; функция y=cthx не определена в точке х=0. Название гиперболических функций (синус, косинус, …) объясняется тем, что для них справедливы тождества ''похожие'' на тригонометрические:
Свойства
ch(x± y)=chx · chy ± shx · shy , (1)
sh(x± y)=shx · chy± chx · shy , (2)
ch2x–sh2x=1 , (3)
ch2x=ch2x+sh2x , (4)
sh2x=2shx · chx . (5)
