- •1.Квадратные матрицы и их свойства. Определители и их свойства, вычесление определителей второго и третьего порядка. Минор и алгебраическое дополнение.
- •2.Системы линейных алгебраических уравнений. Правило Крамера. Метод Гаусса.
- •4.Теорема Кронека-Капелли. Решение систем алгебраических уравнений матричным способом.
- •5. Собственное значение и собственные векторы матрицы.
- •6. Определение вектора. Модуль вектора. Определение компланарных, коллинеарных и равных векторов.
- •7. Проекция вектора на ось. Разложение вектора на ось по единичным векторам.
- •8. Умножение вектора на число. Сложение и вычитание вектора.
- •9. Расстояние между двумя точками в прямоугольной системе координат. Деление отрезка в данном отношении.
- •10. Скалярное произведение 2-х векторов и его свойства. Угол между 2-мя векторами.
- •11. Векторное произведение. Его свойства. Площадь δ и s.
- •12. Формулы векторного произведение векторов, заданных проекциями. Условие коллинеарности векторов.
- •Смешанное произведение 3-х векторов. Геометрическое толкование. Признак компланарности 3-х векторов.
- •Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
- •Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
- •Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
- •14.Уравнение прямой с угловыми коэффициентом и проходящие через заданную точку.
- •15.Уравнение прямой, проходящей через две заданные точки
- •16. Общее уравнение прямой линии. Угол между двумя прямыми.
- •17. Полярная система координат на плоскости.
- •18. Нормальное уравнение прямой. Расстояние от данной точки до данной прямой.
- •19. Окружность, ее каноническое и общее уравнение
- •20.Эллипс. Вывод канонического уровнения эллипса, его характеристики.
- •21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.
- •22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
- •23. Эллипс. Определение. Вывод канонического уравнения.
- •24. Гипербола. Определение. Вывод канонического уравнения.
- •25.Переменные и постоянные величины множества. Функции. Область определения, способы задания. График функции. Приращение функции.
- •26.Предел переменной величины (последовательности). Предел функции при непрерывном стремлении аргументы к конечному значению или к бесконечности. Свойства функций, имеющих предел.
- •28.Теоремы о пределах суммы, произведения и частного, признаки существования предела: а) для монотонной ограниченной последовательности; б) для функции, заключенной между двумя функциями.
- •29.Первый замечательный предел.
- •30.Второй замечательный предел. Натуральные логарифмы. Применение замечательных пределов к нахождению функции.
- •32.Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.
- •33.Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.
- •34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.
- •Производная обратной функции
- •Производная сложной функции
- •Производные тригонометрических функций
- •Правила дифференцирования суммы, произведения, частного функции. Производные сложных функций.
- •36. Функции заданные параметрическими уравнениями их дифференцирование. Теоремы Коши, Лагранжа, Роля. Правило Лопиталя.
- •38. . Экстремумы функции. Необходимый признак экстремума. Достаточный признак экстремума, использующие первую и вторую производную.
- •39. Исследование условий и построение графиков.
- •40.Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры. Вертикальная
- •[Править]Горизонтальная
- •[Править]Наклонная
- •[Замечание
21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.
Прямая L:
Пусть φ – угол между плоскостью и прямой.
Тогда θ – угол между
и
.
Найдем
,
если
,
т.к.
Расстояние от точки до плоскости.
Дано:
M0 (x0;y0;z0)
Расстояние d от точки М0
до плоскости ∆ равно модулю проекции
вектора
(где М1(x1;y1;z1)
- произвольная точка плоскости) на
направление нормального вектора
!!!Если плоскость задана уравнением:
то расстояние до плоскости находится по формуле:
22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
Уравнение с угловым коэффициентом.
k= tg α – угловой коэффициент.
Если b=0 то прямая проходит через начало координат. Уравнение примет вид
Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох.
Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет вид и пройдет параллельно оси оу.
Общее уравнение прямой.
A, B, C – произвольные числа, причем А и В не равны нулю одновременно.
Если В=0, то уравнение имеет вид
или
.
Это уравнение прямой, параллельной оси
оу. и проходящей через точку
Если В≠0, то получаем уравнение с угловым коэффициентом
.Если А=0, то уравнение имеет вид
.
Это уравнение прямой, параллельной оси
ох.
Если С=0, то уравнение проходит через т. О (0;0).
Уравнение прямой, проходящей через точку, в данном направлении.
т М (х0;у0).
Уравнение прямой записывается в виде .
Подставим в это уравнение точку М
Решим систему:
Уравнение прямой, проходящей через 2 точки.
К (х1;у1) М (х2;у2)
Уравнение прямой в отрезках.
К (а;0); М (0;b)
Подставим точки в уравнение прямой:
Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору.
М0 (х0;у0).
Возьмем произвольную точку М (х;у).
Т.к.
,
то
Нормальное уравнение прямой.
Уравнение прямой можно записать в виде:
Т.к.
;
,
то:
Угол между прямыми.
Дано: прямые L1 и L2 с угловыми коэффициентами
Требуется найти угол между прямыми:
23. Эллипс. Определение. Вывод канонического уравнения.
Э
ллипсом
называется
геометрическое место всех
точек плоскости, сумма
расстояний от которых до
до фокусов есть величина
постоянная, большая, чем расстояние между фокусами.
Пусть М (х;у) – произвольная точка эллипса.
Т.к. MF1 + MF2 = 2a
Т.к.
То получаем
Или
24. Гипербола. Определение. Вывод канонического уравнения.
Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до фокусов есть величина постоянная.
Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF1 – MF2|=2a или MF1 – MF2=±2a,
25.Переменные и постоянные величины множества. Функции. Область определения, способы задания. График функции. Приращение функции.
Переменная величина – такая величина, которая может принимать любые значения X Y Z.
Постоянная величина – константа, которая сохраняет всегда одно и тоже значение.
Функции – если каждому значению переменной Х соответствует одно и только одно значение переменной У, то У является функцией от Х, у=f(x).
Область определения функции D(f) – называется множество значений Х при которых функция существует.
Способы задания: 1) табличный; 2)графический; 3)аналитический.
График функции – это множество точек, у которых абсциссы являются допустимыми значения аргумента Х, а ординаты – соответствующими значениями функции У.
Приращения функции – это свойство функции f(x) быть не прерывной в точке, то есть это разность между двумя значениями функции. Если есть 2 точки Х и А на числовой оси, то на отрезке(х;а) функция должна существовать и если существует разность f(x)-f(a) где х бесконечно много приближается по своему значению к значению а(этот отрезок очень маленький), то это и есть приращение функции.
f(x)-f(a) – приращение функции.
