- •1.Квадратные матрицы и их свойства. Определители и их свойства, вычесление определителей второго и третьего порядка. Минор и алгебраическое дополнение.
- •2.Системы линейных алгебраических уравнений. Правило Крамера. Метод Гаусса.
- •4.Теорема Кронека-Капелли. Решение систем алгебраических уравнений матричным способом.
- •5. Собственное значение и собственные векторы матрицы.
- •6. Определение вектора. Модуль вектора. Определение компланарных, коллинеарных и равных векторов.
- •7. Проекция вектора на ось. Разложение вектора на ось по единичным векторам.
- •8. Умножение вектора на число. Сложение и вычитание вектора.
- •9. Расстояние между двумя точками в прямоугольной системе координат. Деление отрезка в данном отношении.
- •10. Скалярное произведение 2-х векторов и его свойства. Угол между 2-мя векторами.
- •11. Векторное произведение. Его свойства. Площадь δ и s.
- •12. Формулы векторного произведение векторов, заданных проекциями. Условие коллинеарности векторов.
- •Смешанное произведение 3-х векторов. Геометрическое толкование. Признак компланарности 3-х векторов.
- •Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
- •Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
- •Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
- •14.Уравнение прямой с угловыми коэффициентом и проходящие через заданную точку.
- •15.Уравнение прямой, проходящей через две заданные точки
- •16. Общее уравнение прямой линии. Угол между двумя прямыми.
- •17. Полярная система координат на плоскости.
- •18. Нормальное уравнение прямой. Расстояние от данной точки до данной прямой.
- •19. Окружность, ее каноническое и общее уравнение
- •20.Эллипс. Вывод канонического уровнения эллипса, его характеристики.
- •21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.
- •22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
- •23. Эллипс. Определение. Вывод канонического уравнения.
- •24. Гипербола. Определение. Вывод канонического уравнения.
- •25.Переменные и постоянные величины множества. Функции. Область определения, способы задания. График функции. Приращение функции.
- •26.Предел переменной величины (последовательности). Предел функции при непрерывном стремлении аргументы к конечному значению или к бесконечности. Свойства функций, имеющих предел.
- •28.Теоремы о пределах суммы, произведения и частного, признаки существования предела: а) для монотонной ограниченной последовательности; б) для функции, заключенной между двумя функциями.
- •29.Первый замечательный предел.
- •30.Второй замечательный предел. Натуральные логарифмы. Применение замечательных пределов к нахождению функции.
- •32.Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.
- •33.Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.
- •34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.
- •Производная обратной функции
- •Производная сложной функции
- •Производные тригонометрических функций
- •Правила дифференцирования суммы, произведения, частного функции. Производные сложных функций.
- •36. Функции заданные параметрическими уравнениями их дифференцирование. Теоремы Коши, Лагранжа, Роля. Правило Лопиталя.
- •38. . Экстремумы функции. Необходимый признак экстремума. Достаточный признак экстремума, использующие первую и вторую производную.
- •39. Исследование условий и построение графиков.
- •40.Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры. Вертикальная
- •[Править]Горизонтальная
- •[Править]Наклонная
- •[Замечание
Правила дифференцирования суммы, произведения, частного функции. Производные сложных функций.
Для нахождения производной сложной функции надо производную данной функции по промежуточному аргументу умножить на производную промежуточного аргумента по независимому аргументу.
Производная обратной функции равна обратной величине производной данной функции.
Неперывность ф-ции
Пусть функция y=f(x) определена в точке х0 и в некоторой окрестности этой точки. Функция y=f(x) называется непрерывной в точке х0, если существует предел функции в этой точке и он равен значению функции в этой точке:
Это означает:
- функция определена в точке х0 и в ее окрестности; - функция имеет предел при х→х0
- предел функции в точке х0 равен значению функции в этой точке, т.е. выполняется равенство.
Это означает, что при нахождении предела непрерывной функции f(x) можно перейти к пределу под знаком функции, то есть в функции f(x) вместо аргумента х подставить предельное значение х0
дифференциалы высших порядков
Д
ифференциал
n-ого
порядка, есть дифференциал от дифференциала
(n-1)-ого
порядка, т.е. производную функции можно
рассматривать, как отношение ее
дифференциала соответствующего порядка
к соответствующей степени дифференциала
независимой переменной.
36. Функции заданные параметрическими уравнениями их дифференцирование. Теоремы Коши, Лагранжа, Роля. Правило Лопиталя.
1) если
определены
при
и
существует обратная
функция
для
,
то говорят о параметрическом задании
функции
.
При исследовании параметрически
заданной функции иногда приходится
находить ее производную по аргументу
x. В
этой статье мы выведем формулу
производной параметрически заданной
функции
2)
Теорема Ролля
Пусть функция f: [a, b] → R непрерывна на сегменте [a, b], и имеет конечную или бесконечную производную внутри этого сегмента. Пусть, кроме того, f(a) = f(b). Тогда внутри сегмента [a, b] найдется точка ξ такая, что f'(ξ) = 0.
Теорема Лагранжа
Если функция f:
[a,
b] →
R
непрерывна на сегменте [a,
b] и
имеет конечную или бесконечную производную
во внутренних точках этого сегмента,
то
такое,
что f(b)
- f(a)
= f'(ξ)(b
- a).
Теорема Коши
Если каждая из функций f и g непрерывна на [a, b] и имеет конечную или бесконечную производную на ]a, b[ и если, кроме того, производная g'(x) ≠ 0 на ]a, b[, то такое, что справедлива формула
3)
Правило Лопиталя
представляет собой метод вычисления
пределов, имеющих неопределенность
типа
или
.
Пусть a
является некоторым конечным действительным
числом или равно бесконечности.
Если
и
,
то
;
Если
и
,
то аналогично
.
Правило Лопиталя можно
также применять к неопределенностям
типа
.
Первые две неопределенности
можно
свести к типу
или
с
помощью алгебраических преобразований.
А неопределенности
сводятся
к типу
с
помощью соотношения
Правило Лопиталя справедливо также и для односторонних пределов.
37. Теоремы о возрастании и убывании (постоянстве) функций в интервале, достаточный признак. Выпуклость и вогнутость графика функции, точки перегиба. Необходимый признак существования точек перегиба. Достаточный признак существования точки перегиба.
Теорема . Если в данном промежутке производная функции положительна, то функция возрастает в этом промежутке; если производная отрицательна, то функция убывает в соответствующем промежутке.
Замечание. Теорема имеет простой геометрический смысл. Если в некотором промежутке касательная к графику функции у-/(х) образует с осью Ох острый угол а (18 а > 0), то функция возрастает в этом промежутке. Если касательная к графику образует с осью Ох тупой угол а (1§ сх < 0), то функция убывает.
Достаточный признак возрастания функции. Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I.
Достаточный признак убывания функции. Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I.
График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале.
График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале.
Теорема. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый.
Точка графика непрерывной функции, отделяющая его выпуклую часть от вогнутой, называется точкой перегиба.
Теорема. Пусть кривая определяется уравнением y = f(x). Если f ''(x0) = 0 или f ''(x0) не существует и при переходе через значение x = x0 производная f ''(x) меняет знак, то точка графика функции с абсциссой x = x0 есть точка перегиба.
Таким образом, точки перегиба следует искать только среди таких точек, где вторая производная обращается в нуль или не существует.
