- •1.Квадратные матрицы и их свойства. Определители и их свойства, вычесление определителей второго и третьего порядка. Минор и алгебраическое дополнение.
- •2.Системы линейных алгебраических уравнений. Правило Крамера. Метод Гаусса.
- •4.Теорема Кронека-Капелли. Решение систем алгебраических уравнений матричным способом.
- •5. Собственное значение и собственные векторы матрицы.
- •6. Определение вектора. Модуль вектора. Определение компланарных, коллинеарных и равных векторов.
- •7. Проекция вектора на ось. Разложение вектора на ось по единичным векторам.
- •8. Умножение вектора на число. Сложение и вычитание вектора.
- •9. Расстояние между двумя точками в прямоугольной системе координат. Деление отрезка в данном отношении.
- •10. Скалярное произведение 2-х векторов и его свойства. Угол между 2-мя векторами.
- •11. Векторное произведение. Его свойства. Площадь δ и s.
- •12. Формулы векторного произведение векторов, заданных проекциями. Условие коллинеарности векторов.
- •Смешанное произведение 3-х векторов. Геометрическое толкование. Признак компланарности 3-х векторов.
- •Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
- •Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
- •Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
- •14.Уравнение прямой с угловыми коэффициентом и проходящие через заданную точку.
- •15.Уравнение прямой, проходящей через две заданные точки
- •16. Общее уравнение прямой линии. Угол между двумя прямыми.
- •17. Полярная система координат на плоскости.
- •18. Нормальное уравнение прямой. Расстояние от данной точки до данной прямой.
- •19. Окружность, ее каноническое и общее уравнение
- •20.Эллипс. Вывод канонического уровнения эллипса, его характеристики.
- •21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.
- •22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
- •23. Эллипс. Определение. Вывод канонического уравнения.
- •24. Гипербола. Определение. Вывод канонического уравнения.
- •25.Переменные и постоянные величины множества. Функции. Область определения, способы задания. График функции. Приращение функции.
- •26.Предел переменной величины (последовательности). Предел функции при непрерывном стремлении аргументы к конечному значению или к бесконечности. Свойства функций, имеющих предел.
- •28.Теоремы о пределах суммы, произведения и частного, признаки существования предела: а) для монотонной ограниченной последовательности; б) для функции, заключенной между двумя функциями.
- •29.Первый замечательный предел.
- •30.Второй замечательный предел. Натуральные логарифмы. Применение замечательных пределов к нахождению функции.
- •32.Производная, ее геометрический и механический смысл. Касательная и нормаль к плоскости кривой. Дифференцируемость функций.
- •33.Производная суммы, произведения и частного. Гиперболические функции, их свойства и графики.
- •34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.
- •Производная обратной функции
- •Производная сложной функции
- •Производные тригонометрических функций
- •Правила дифференцирования суммы, произведения, частного функции. Производные сложных функций.
- •36. Функции заданные параметрическими уравнениями их дифференцирование. Теоремы Коши, Лагранжа, Роля. Правило Лопиталя.
- •38. . Экстремумы функции. Необходимый признак экстремума. Достаточный признак экстремума, использующие первую и вторую производную.
- •39. Исследование условий и построение графиков.
- •40.Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры. Вертикальная
- •[Править]Горизонтальная
- •[Править]Наклонная
- •[Замечание
34. Производные основных элементарных функций (степенных, логарифмических, показательных и гиперболических функций). Производная сложной и обратной функции. Производные тригонометрических функций.
1) Производная логарифмической и показательной функции
Предполагается, что основание a показательной и логарифмической функции больше нуля и не равно единице: a > 0, a ≠ 1. Производная показательной функции y = ax с основанием a определяется формулой
Если a = е, то получаем результат в виде
Производная логарифмической функции y = loga x определяется выражением
Для натурального логарифма y = ln x производная равна
2) Производные гиперболических функций
Производные гиперболических функций легко находятся, поскольку гиперболические функции являются комбинациями ex и e−x. Например, гиперболические синус и косинус определяются как
Производные этих функций имеют вид
Остальные формулы доказываются аналогично .
3)Производная степенной функции
Если f(x) = xp, где p - действительное число, то
Если показатель степени является отрицательным числом, т.е. f(x) = x−p, то
Производная обратной функции
Пусть f
: [a,
b]
→ [c,
d]
непрерывная, строго монотонная на
интервале [a,
b]
функция, имеющая производную в точке
х0
[a,
b].
Тогда обратная функция g
= f
-1: [c,
d]
→[a,
b]
имеет производную в точке y0
= f(x0)
интервала [c,
d]
равную
,
если f '(x0) ≠ 0. Если f '(x0) = 0, то g '(y0) = + ∞ (в случае, когда f возрастает), и g '(y0) = − ∞ (в случае, когда f убывает). Доказательство. Пусть f (x) возрастает на [a, b] и f '(x) ≠ 0. Тогда в окрестности точки y0 = f (x0) существует обратная функция g = f -1; она непрерывна и также возрастает на [c, d], в силу чего g (y) ≠ g(y0), если у ≠ у0. Таким образом,
.
Производная сложной функции
Пусть функция f:
[a,
b]
→ [c,
d],
а функция g:[a1,
b1]
→ [c1,
d1],
причём [a1,
b1]
[c,
d].
Если функция f
дифференцируема в точке х0
[a,
b],
а функция g
дифференцируема в точке y0
= f
(x0)
[a1,b1],
то сложная функция F(x)
= g(
f
( x ))
имеет в точке х0
производную, равную
g ' ( f ( x0 ) )·f ' ( x0 ).
Производные тригонометрических функций
Производные четырёх тригонометрических функций и, соответственно, четырёх обратных тригонометрических функций определяются следующими формулами (рядом указана область определения каждой функции):
|
|
|
|
|
|
|
|
Дифференциал, его геометрический смысл. Непрерывность. Дифференциал суммы, произведения и частного. Дифференциал сложной функции. Инвариантность формы дифференциала функций. Применение дифференциала к приближенным вычислениям. Дифференцирование неявных функций. Производные и дифференциалы высших порядков. Формула Лейбница(без доказательства).Механический смысл второй производной. Уравнение касательной и нормали к плоскости кривой.
Дифференциал функции y=f(x) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dy (или df(x) ).
Иначе. Дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.
