
- •Химическая переработка углеводородных газов и газоконденсатов, состояние и перспективы развития в россии и за рубежом
- •Процессы химической переработки углеводородных газов, реализованные в промышленности. Перспективные направления химической переработки углеводородных газов
- •Газохимия на предприятиях оао газпром, состояние и перспективы
- •Пиролиз метана с целью получения ацетилена. Разновидности процесса в зависимости от метода подвода тепла
- •Выделение ацетилена из газов пиролиза. Области его применения
- •Производство газообразных ненасыщенных углеводородов. Пиролиз как основной процесс производства. Факторы, влияющие на процесс.Химизм процесса.Принципиальная технологическая схема процесса
- •Поточная схема очистки и разделения газа пиролиза. Концентрирование этилена и пропилена
- •Новые виды пиролиза: в присутствии гетерогенных катализаторов, инициирующих добавок, гидропиролиз
- •Области применения газообразных олефинов
- •Каталитическое дегидрирование низших парафиновых углеводородов
- •Производство и применение изобутилена. Принципиальная технологическая схема дегидрирования изобутана в кипящем слое катализатора
- •Производство бутандиена и изопрена. Двухстадийное и одностадийное дегидрирование бутана. Технологическая схема процесса
- •Получение изопрена
- •Технология производства сажи. Классификация саж. Строение и свойства сажи
- •Дисперсность.
- •Структурность.
- •Поверхность частиц сажи и ее свойства.
- •Объемный вес.
- •Истинная плотность сажевых частиц.
- •Теплопроводность.
- •Производство сажи различными способами. Производство сажи термическим разложением без доступа воздуха. Получение сажи осаждением из диффузионного пламени
- •Печные способы производства. Технология производства печной газовой сажи
- •Методы улавливания и очистки сажи
- •Очистка сажи
- •Применение сажи
- •Классификация процессов полимеризации
- •Производство полиэтилена низкой плотноти при высоком давлении и высокой плотности при низком давлении
- •Производство полипропилена
- •Получение олистирола. Свойства и применения полистирола
- •Каучуки общего назначения
- •Каучуки специального назначения
- •Основные закономерности окисления парафиновых углеводородов. Окисление как цепной радикальный процесс, механизм и основные стадии процесса. Особенности механизма газофазного окисления углеводородов
- •Окисление углеводородов, согласно теории акад. Н.Н. Семенова, является радикально-цепной реакцией с вырожденным разветвлением цепи.
- •Прямое окисление метана в газовой фазе. Трудности разделения продуктов реакции
- •Закономерности прямого окисления углеводородов
- •Жидкофазное окисление низших парафиновых углеводородов в кислоты
- •Получение синтез-газа конверсией метана с водяным паром. Условия процесса и технологическая схема
- •Углекислотная конверсия метана, применяемые катализаторы. Парциальное окисление метана. Новые модификации процесса получения синтез-газа
- •Новые модификации процесса получения синтез-газа.
- •Основные направления химической переработки синтез-газа
- •Производство на основе синтез-газа синтетических моторных топлив по методу фишера-тропша. Состав продуктов реакции в зависимости от применяемых катализаторов, температуры и давления. Схема
- •Производство метанола
- •Производство и применение формальдегида
- •Производство уксусной кислоты и мтбэ
- •Получение метилтретбутилового эфира (мтбэ)
- •Производство альдегидов и спиртов методом оксосинтеза
- •Гидроформилирование олефинов.
- •Варианты технологического оформления стадии гидроформилирования
- •Прямое окисление олефинов в альдегиды и кетоны
- •Окисление олефинов по метильной группе
- •Производство спиртов гидратацией газообразных олефинов
- •Сернокислотная гидратация низших олефинов
- •Прямая гидратация пропилена
Углекислотная конверсия метана, применяемые катализаторы. Парциальное окисление метана. Новые модификации процесса получения синтез-газа
Углекислотная конверсия.
Используется в промышленности гораздо реже паровой. Однако этот метод позволяет получать синтез-газ с мольным отношением СО : Н2=1:1. Газ такого состава нужен для гидроформилирования, получения формальдегида или поликарбонатов. Используя комбинацию углекислотной и паровой конверсии, можно получать синтез-газ практически любого состава.
Углекислотная конверсия позволяет также вовлекать в синтез диоксид углерода, запасы которого огромны, а масштабы использования в промышленности невелики (в основном для производства соды, мочевины и салициловой кислоты), поэтому расширение числа синтезов на основе СО2 – перспективное направление развития газохимии.
Углекислотная конверсия метана протекает с бо́льшим поглощением тепла, чем паровая конверсия. Селективности и конверсии, близкие к 100%, достигаются при 1000-1100°С. При температуре ниже 640°С равновесие реакции сдвинуто в сторону образования СН4 + СО2 (протекает метанирование СО).
Помимо основной реакции при углекислотной конверсии метана протекает реакция образования углерода:
С Н4+ 2СО2 С + 2СО + Н2О (Н = +641 кДж/моль),
Эта реакция является эндотермической и протекает при высоких температурах.
Катализаторы углекислотной конверсии метана - металлы и их оксиды.
Из числа металлических катализаторов наибольшую активность проявляют металлы VIII группы. Она снижается в ряду: Rh>Pt>Pd~Ir>Ru. Они также менее подвержены зауглероживанию. Активность благородных металлов определяется примененным носителем, способствующим их диспергации на поверхности. Активность катализаторов, содержащих один и тот же металл и разные оксиды в углекислотной конверсии метана уменьшается в ряду Al2O3>ThO2>SiO2>MgO, соответствующем изменению кислотности носителя, способствующей образованию более мелких кристаллитов металла. Из неблагородных металлов наибольшей активностью характеризуется никель. Однако повышение температуры синтеза приводит к его закоксовыванию. Снизить этот эффект возможно, добавляя небольшие количества благородных металлов (~0,01-2%) к никелевому катализатору.
В качестве оксидных катализаторов можно использовать индивидуальные (например, MgO, СеО2) и смешанные оксиды.
Парциальное окисление метана.
При этом методе используют никелевые катализаторы, работающие при атмосферном давлении и температуре 750-900°С. В разных слоях реактора наблюдается:
- в верхних слоях - экзотермическую реакцию глубокого окисления
С
Н4
+ 2О2
СО2
+ Н2О
(Н
= -802 кДж.моль)
- в нижних слоях - эндотермическую реакцию углекислотной конверсии
С
Н4
+ СО2
2СО + 2Н2
(Н
= +261 кДж.моль)
К недостаткам метода можно отнести :
-высокую стоимость кислорода (~50% от общей величины),
-взрывоопасность,
-возможность разрушения катализатора за счет локальных перегревов,
-возможность образования углерода за счет газофазных реакций.
Парциальное окисление метана в синтез-газ благоприятно во всем интервале температур и могло бы дать 100%-ную конверсию, если бы не другие реакции, в частности, конверсия водяного газа и ее обратная реакция (гидрирование СО2), а также реакции окисления метана:
С Н4 + О2 СО2 + Н2
С Н4 + 1,5О2 СО + 2Н2О.
Наиболее полная конверсия метана при мольном отношении СН4:О2=2:1 достигается при температуре выше 750°С.
Различают парциальное окисление метана в объеме (гомогенное окисление) и на катализаторе.
Гомогенное окисление метана является единственным промышленным процессом получения синтез-газа парциальным окислением. Этот процесс некаталитический. Реакция протекает при температуре 1100-1300°С до достижения термодинамического равновесия. После удаления Н2S и СО2 синтез-газ имеет состав СО:Н2=1:2.
Каталитическое окисление метана может быть использовано для понижения температуры процесса. Как и в паровой конверсии, для этой цели могут использоваться никелевые катализаторы.
Парциальное окисление при малом времени контакта. Высокие объемные скорости (10000 ч-1 и выше) обеспечивают хорошее смешение и минимальное влияние массопереноса. Малое время контакта может быть достигнуто при пропускании реакционной смеси через керамические блоки с нанесенным на них металлом - катализатором или через металлические сетки.
Малое время контакта (от 10-5 до 10-1 с) позволяет осуществлять процесс с высокой селективностью по синтез-газу (выше 90%) при почти полной конверсии метана. В этом случае метан окисляется по "прямому" механизму, минуя реакции глубокого окисления, паровой и углекислотной конверсии, которые требуют большего времени контакта. Такое проведение процесса является более перспективным, поскольку позволяет сократить размеры аппарата и, возможно, снизить тепловые нагрузки.