Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вторичная переработка газов-шпора.doc
Скачиваний:
18
Добавлен:
01.03.2025
Размер:
2.41 Mб
Скачать

Окисление углеводородов, согласно теории акад. Н.Н. Семенова, является радикально-цепной реакцией с вырожденным разветвлением цепи.

  • На первой стадии окисления – на стадии зарождения цепи под влиянием температуры, катализатора, излучения или инициатора образуются свободные углеводородные радикалы R.:

U r r + RH R

Или в отсутствие инициаторов:

R H + O2 R + HOO

  • На второй стадии окисления - стадии продолжения цепи образуются пероксидные радикалы ROO , затем гидропероксиды, при этом генерируется первоначальный свободный радикал:

R + O2 RO2

R O2 + RH ROOH + R

  • При взаимодействии радикалов происходит обрыв цепи:

Окисление углеводородов в газовой фазе - процесс значительно более сложный, чем жидкофазное окисление. Существенным отличием газофазного окисления от жидкофазного является зависимость механизма окисления от температуры. Другое отличие заключается в большой роли стенки реактора, которая может проявляться на стадиях инициирования, продолжения и обрыва цепи.

Прямое окисление метана в газовой фазе. Трудности разделения продуктов реакции

Окисление метана проводят с целью получения формальдегида через стадию образования метанола:

С Н4 + 1/2О2 СН3ОН + 67,6 ккал/моль,

С Н3ОН + 1/2О2 СН2О + Н2О + 70,47 ккал/моль,

С Н2О + 1/2О2 НСООН +131,45 ккал/моль,

Н СООН + 1/2О2 СО2 + Н2О + 115,69 ккал/моль.

Трудности прямого окисления метана связаны с тем, что с увеличением глубины окисления процесс идет со все возра­стающей скоростью и тепловым эффектом. Это затрудняет температурное регулирование процесса до нужной стадии окисления. Поэтому реакцию проводят с небольшой конвер­сией метана за проход и кратким временем пребывания про­дуктов реакции в реакторе, при повышенном давлении, в при­сутствии инициаторов — оксидов азота, бромистого водорода и в избытке углеводорода, что обеспечивает проведение реак­ции вне пределов взрываемости смесей углеводородов с воз­духом или кислородом, которые обычно используют в качест­ве окислителей. Большие трудности вызывает также подав­ление побочной реакции полного окисления углеводорода до оксида и диоксида углерода (СО и CO2), что значительно снижает выход целевых продуктов, и часто процесс стано­вится экономически невыгодным. Кроме того, тепловой эф­фект полного сгорания углеводородов до СО2 и H2O во много раз превышает тепловой эффект реакций образования кис­лородсодержащих продуктов.

При каталитическом окислении метана кис­лородом процесс можно направить на получение формальдегида или муравьиной кислоты. С целью получения формальдегида окисление метана кис­лородом проводят в присутствии оксидов азота (1—2%), а также с применением твердого контакта (94% меди и 6% олова). При окислении метана в присутствии платины или палладия в основном получают муравьиную кислоту. Однако добиться получения наиболее ценных продуктов - метанола и формальдегида с достаточно высокой селективностью при каталитическом окислении метана не удается.