- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
2.5.1 Пример решения задачи
Рассчитать и построить эпюру гидростатического давления, создаваемого жидкостью на внутреннюю поверхность цилиндрической цистерны диаметром D = 4,2 м при уровне заполнения ее водой Н = 4 м (рис. 2.6).
Делим высоту уровня жидкости на десять равных частей, и обозначаем эти точки на внутренней поверхности от «0» - в точке касания свободной поверхности жидкости с поверхностью цистерны до «10» - в самой нижней точке цистерны. Определив точки, рассчитываем величины векторов давления в этих точках.
В точке 0 величина вектора равна нулю, так как над этой точкой нет жидкости h = 0, и она соответственно не создает давления. Вектор давления превращается в точку.
В
точке 1 высота жидкости над этой точкой
м.
Давление,
создаваемое жидкостью
3924 Па.
Аналогично определяем величины давления во всех остальных точках:
7848
Па,
11772
Па,
15696
Па,
19620 Па,
23544
Па,
27468
Па,
31392
Па,
35316
Па,
39240
Па.
После определения величин векторов, находим их направления. Мы знаем, что гидростатическое давление направлено всегда по внутренней нормали к поверхности, на которую оно действует. Нормаль к внутренней поверхности круга – это радиус. Соответственно, каждую расчетную точку соединяем с центром и получаем направления действия векторов. Выбираем масштаб и откладываем величины векторов давления от заданных точек в выбранном масштабе. Концы векторов соединяем плавной кривой, которая и будет эпюрой гидростатического давления.
2.6 Закон Паскаля
Гидростатическое давление в произвольной точке внутри жидкости равно сумме величин давления на поверхности жидкости и давления создаваемого самой жидкостью pi = p0 + ρ g hi.
Здесь давление создаваемое жидкостью зависит лишь от высоты столба жидкости hi, и поэтому насколько изменится давление на поверхности (р0), настолько изменится давление в точке i (pi). Это положение носит название закона Паскаля.
Закон Паскаля: Изменение давления на поверхности жидкости, находящейся в равновесии передаётся в любую точку жидкости без изменений.
Закон Паскаля широко применяется в различных гидравлических машинах, из которых наибольшее распространение получили: гидравлический пресс, гидравлические аккумуляторы и мультипликаторы, гидравлические домкраты.
Гидравлический пресс – это машина, создающая большие усилия, необходимые при штамповании или прессовании изделий. Гидравлические прессы предназначены также для проведения испытаний материалов на прочность. Гидравлический пресс (рис.2.7) состоит из двух камер, соединенных трубопроводом.
В
первой камере установлен поршень
диаметром d, во второй – диаметром D. Так
как камеры заполнены жидкостью, то
прикладывая усилие F1 к маленькому
поршню, площадь которого
,
получаем под ним среднее давление
Это давление, как
заметил Паскаль, передается во все точки жидкости, в тот числе и на поверхность большого поршня, поэтому на большой поршень действует давление рср, а усилие, которое создает этот поршень
.
(2.27)
Таким образом, прессующее усилие F2 во столько раз больше силы F1, приложенной к первому поршню, во сколько раз площадь поршня S2 больше площади S1.
Гидравлический аккумулятор позволяет накопить энергию в жидкости, которую подает насос в период холостого хода других гидравлических машин и быстро отдать ее в период рабочего хода. Аккумулятор обеспечивает работу насоса с постоянной нагрузкой, а кроме того, он поддерживает статическое давление в сети.
Применяют два вида аккумуляторов: воздушные и грузовые. В рабочем цилиндре грузового аккумулятора массивный плунжер диаметром D, на котором одето коромысло с подвешенными грузами. Аккумулятор заряжается, когда насос подает рабочую жидкость в рабочий цилиндр с давлением, которое обеспечивает подъем плунжера с грузом на высоту h. Теоретическое давление насоса, необходимое для зарядки аккумулятора
,
(2.28)
где G – сила веса груза (G = mg), H;
S - площадь торцевой поверхности плунжера, м2.
За счет поднятия груза G на высоту хода поршня h, накапливается потенциальная энергия
.
(2.29)
Д
ля
увеличения давления жидкости при
нагнетании используют гидравлические
мультипликаторы. Схема гидравлического
мультипликатора приведена на рис. 2.8.
В цилиндр мультипликатора подается
жидкость с давлением p1,
из-за чего на поршень D действует сила
,
которая создает давление рабочей
жидкости в полости действия плунжера
d
что
значительно выше давления р1.
Реальное давление после мультипликатора
с учетом коэффициента полезного действия
можно
определить
,
(2.30)
где р1 – давление рабочей жидкости на входе в мультипликатор.
