- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
13.3. Теплоотдача при обтекании плоской поверхности (пластины)
Течение жидкости вдоль пластины, после накатывания потока на край пластины, сопровождается образованием гидродинамического пограничного слоя. В нем скорость движения жидкости изменяется от нуля на поверхности пластины, к которой прилипают частички жидкости, до значения скорости невозмущённого потока V0 — на внешний границе этого пограничного слоя (рис. 13.1).
Рис. 13.1. Схема движения жидкости при обтекании пластины
Образование пограничного слоя и падение скорости в нем происходят из-за вязкости жидкости. У передней кромки в начале пластины толщина пограничного слоя минимальна, затем она растет, ее величина зависит от расстояния от передней кромки и степени турбулизации набегающего потока. При небольшой турбулизации потока движение жидкости вдоль пластины сопровождается увеличением толщины пограничного слоя, тормозящее воздействие стенки распространяется на всё более далекие слои жидкости. Режим движения в пограничном слое ламинарный, толщину слоя на расстоянии x от начала пластины можно рассчитать по формуле
. (13.9)
Однако при значительной турбулизации набегающего потока, когда Re > 105, в пограничном слое, на некотором критическом расстоянии xкр начинают возникать вихри, и течение жидкости в слое приобретает турбулентный характер. В пограничном слое начинается перемешивание жидкости, которое всё-таки затухает поблизости от поверхности пластины — здесь сохраняется очень тонкий вязкий подслой, изображенный в правой половине рис. 13.1. Толщина турбулентного пограничного слоя также возрастает пропорционально удалению от начального края пластины
. (13.10)
При разности температур пластины и набегающего потока между поверхностью пластины и жидкостью возникает теплообмен. Величину удельного теплового потока можно вычислить по формуле Ньютона (13.1) Тепловой поток пропорционален температурному напору (tс - tж), и коэффициенту теплоотдачи, который зависит от гидродинамической картины и режима течения теплоносителя, расстояния x от передней кромки и от теплофизических свойств теплоносителя.
Около поверхности пластины в потоке жидкости, кроме гидродинамического, формируется также тепловой пограничный слой, в пределах которого температура теплоносителя изменяется от tс до tж. Температуру tс имеют частицы жидкости, прилипшие к стенке, температура tж характерна для жидкости, находящейся вдали от поверхности стенки. Характер распределения температур в тепловом пограничном слое зависит от режима движения жидкости в динамическом пограничном слое. Формирование теплового пограничного слоя сходно с характером развития гидродинамического слоя.
При ламинарном пограничном слое перенос тепла в слое осуществляется только за счет теплопроводности.
При турбулентном динамическом слое основное изменение температуры происходит в пределах тонкого вязкого подслоя около поверхности теплообмена. В турбулентном ядре пограничного слоя из-за интенсивного перемешивания жидкости изменение температуры незначительно.
Увеличение разности температур (tс - tж) усложняет процесс, так как изменяются теплофизические параметры теплоносителя. Изменение вязкости, теплопроводности и температуропроводности сказывается на интенсивности теплоотдачи. Например, при охлаждении жидкости (тепловой поток направлен от жидкости к стенке) наиболее интенсивно снижается температура в пограничном слое жидкости, а значит вязкость пограничного слоя возрастает, что приводит к утолщению пограничного слоя, уменьшению скорости в нем, а следовательно, и к уменьшению теплоотдачи.
Коэффициент теплоотдачи при ламинарном режиме течения теплоносителя можно определить из критериального уравнения
. (13.11)
Для определения среднего коэффициента теплоотдачи в условиях турбулентного режима жидкости вдоль пластины рекомендуется зависимость
. (13.12)
В формулах (3.11) и (3.12):
Prж — критерий Прандтля теплоносителя при его средней температуре;
Prс— критерий Прандтля теплоносителя при температуре стенки.
;
,
где l — длина пластины, обтекаемой потоком жидкости, м;
— средний коэффициент теплоотдачи, Вт/(м2·град);
V — средняя скорость движения потока жидкости, м/с;
— средняя теплопроводность жидкости при ее средней температуре, Вт/мК;
— вязкость жидкости, м2/с.
Множитель
представляет собой поправку, учитывающую
направление теплового потока. Если
жидкость нагревается в результате
процесса теплообмена, то
,
а при охлаждении жидкости
.
Если
в качестве теплоносителя используется
воздух, или двухатомные газы, то формулы
(13.11) и (13.12) упрощаются, так как значение
критерия Прандтля для воздуха в широком
диапазоне температур практически
неизменно и поправка
.
Уравнения (3.11) и (3.12) трансформируются для воздуха в выражения
; (13.111)
. (13.121)
