- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
12.7. Контрольные вопросы
Объясните суть понятий: температурное поле, температурный градиент, изотермическая поверхность, стационарный и нестационарный тепловой поток.
Сформулируйте основной закон теплопроводности (закон Фурье). Объясните физический смысл коэффициента теплопроводности.
Сравните коэффициенты теплопроводности металлов, строительных материалов, жидкостей и газов.
Как зависит коэффициент теплопроводности строительных материалов от температуры?
Как рассчитать теплопроводность однослойной плоской стенки?
Что такое тепловая проводимость и термическое сопротивление теплопроводности?
Как влияют загрязнения на теплопроводность стенки?
Как определить температуры между слоями в многослойной плоской стенке?
Как определить тепловой поток через цилиндрическую стенку?
Как упростить расчетную зависимость теплопроводности цилиндрической стенки?
13. Конвективный теплообмен
13.1. Общие понятия и определения
Теплоотдача (конвективный теплообмен) — это процесс теплового взаимодействия между поверхностью твердого тела и жидкой (газообразной) средой, омывающей эту поверхность. Перенос тепла связан с переносом массы самой жидкости, поэтому конвекция возможна только в тех средах (включая жидкие металлы), частицы которых легко перемещаются.
Движение жидкости различают естественное и вынужденное. Естественная (свободная) конвекция возникает из-за разности плотностей нагретых и холодных частиц жидкости. Теплая жидкость (имея меньшую плотность) всплывает, холодная — опускается. Интенсивность естественной конвекции зависит от разности температур холодной и теплой жидкости, от тепловых условий процесса, объема пространства и рода жидкости.
Вынужденное (побудительное) движение возникает из-за разности давлений, создаваемой насосом, вентилятором, компрессором или другим побудителем движения.
В общем случае вынужденное и естественное движения могут развиваться совместно. При этом влияние естественного движения будет тем больше чем выше разность температур и чем меньше скорость вынужденного движения.
Количество тепла Q, передаваемого при конвективном теплообмене, можно рассчитать по формуле Ньютона
,
Вт, (13.1)
где — коэффициент теплоотдачи, Вт/(м2·град);
F — площадь греющей (охлаждающей) поверхности омываемой жидкостью, м2;
tс — температура стенки, °C;
tж — температура жидкости, °C.
Количество передаваемого тепла пропорционально площади стенки и разности температур стенка – жидкость. Интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи. Коэффициент теплоотдачи из формулы Ньютона можно определить как количество тепла, переданное в единицу времени через единицу площади теплообменной поверхности при разности температур между стенкой и жидкостью в один градус:
,
Вт/(м2·град). (13.2)
Примерные значения коэффициентов теплоотдачи лежат в пределах:
при естественной конвекции в газах = 1…20 Вт/(м2·град);
при естественной конвекции в воде = 100…1000 Вт/(м2·град);
при вынужденном движении газов = 10…500 Вт/(м2·град);
при вынужденном движении воды = 500…10000 Вт/(м2·град);
при кипении воды = 2000…40000 Вт/(м2·град);
при пленочной конденсации воды = 4000…15000 Вт/(м2·град);
при капельной конденсации воды = 40000…120000 Вт/(м2·град).
Теплоотдача является сложным процессом, а коэффициент теплоотдачи является сложной функцией различных величин, характеризующих процесс теплообмена:
где V — скорость жидкости, омывающей стенку,
tс, tж — средняя температура стенки и средняя температура жидкости;
— физические свойства жидкости:
теплопроводность, теплоёмкость,
плотность, динамическая вязкость и
температуропроводность жидкости
соответственно;
— форма омываемой фигуры;
l1, l2, l3 — размеры омываемой фигуры.
Теплоносителями могут быть как газообразные (воздух, газы, пар...), так и жидкие (вода, топливо, масла, нефть, жидкие металлы...) среды.
Дифференциальные уравнения теплообмена включают уравнения теплопроводности, уравнения движения, уравнения сплошности, уравнения теплоотдачи, уравнения однозначности (краевые условия). Краевые условия в свою очередь состоят из геометрических условий, характеризующих форму и размеры системы, в которой протекает процесс; физических условий, характеризующих физические свойства среды и тела, граничных условий, характеризующих особенности протекания процесса на границе твердое тело — жидкость, временных условий, фиксирующих изменение процесса теплообмена во времени.
Если мы рассмотрим уравнение Фурье, описывающие процесс переноса тепла внутри тела
,
где dF — площадь поверхности твердого тела, омываемой жидкостью,
и сопоставим его с уравнением Ньютона, описывающим количество тепла, переходящего от твердой стенки в жидкость (или обратно — от жидкости к твердой стенке)
,
то при стационарном процессе эти количества равны, и можно записать
.
Откуда
. (13.3)
Это уравнение, позволяющее по известному полю температур определить коэффициент теплоотдачи, называют дифференциальным уравнением теплоотдачи. Но уравнением этим практически не пользуются из-за сложности определения поля температур.
К настоящему времени аналитические решения системы дифференциальных уравнений конвективного теплообмена получены только для некоторых простейших задач и то при введении многих упрощающих предпосылок. Поэтому процессы теплоотдачи изучают экспериментально. Но провести эксперименты при колоссальном многообразии условий невозможно, и на помощь исследователям приходит теория подобия и теплового моделирования, позволяющая распространять результаты эксперимента на другие области подобных в тепловом отношении явлений.
