
- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
2.2 Дифференциальные уравнения равновесия жидкости
Рассмотрим жидкость, находящуюся в равновесии. Выбираем систему произвольных координат с центром в точке O и зафиксируем произвольную точку A с координатами x, y, z (см. рис. 2.1).
Построим вокруг этой точки элементарный параллелепипед с гранями равными: dx, dy, dz. На выделенный объём действуют внешние силы, поэтому он будет находиться в равновесии, если сумма проекций всех действующих сил на каждую ось будет равна нулю. Определим все внешние силы — массовые и гидростатического давления — действующие на грани параллелепипеда со стороны окружающей жидкости. Обозначим проекции массовых сил, отнесенных к единице массы, на координатные оси: Аx, Ay, Az. Тогда проекции массовых сил на ось х
Рис. 2.1. Элементарный параллелепипед, описанный вокруг точки А.
dFx = Axdm = Axρdxdydz, (2.1)
здесь dm — масса элементарного объёма жидкости
dm = ρdV = ρdxdydz. (2.2)
Аналогично, проекции массовых сил на оси y и z:
dFy = Aydm = Ayρdxdydz; (2.3)
dFz = Axdm = Azρdxdydz. (2.4)
Теперь рассмотрим силы гидростатического
давления, действующие на параллельные
грани параллелепипеда 1–2–3–4 и 5–6–7–8.
Обозначим силы давления буквами
и
.
В соответствии с первым свойством
гидростатического давления силы давления
действуют нормально к поверхностям
1–2–3–4 и 5–6–7–8 и являются силами
сжимающими. Если в точке А
гидростатическое давление р,
то на расстоянии
,
на плоскостях 1–2–3–4 и 5–6–7–8
будут действовать давления
(2.5)
.
(2.6)
где
p/
x
– градиент давления на расстояние
от точки А.
Тогда проекции сил действующие на площади dy.dz поверхностей 1–2–3–4 и 5–6–7–8:
,
(2.7)
.
(2.8)
Уравнение равновесия параллелепипеда относительно оси Х получим, приравняв к нулю сумму проекций на ось Х всех внешних сил
.
(2.9)
Подставив в уравнение (2.9) значения всех действующих сил получим
.
(2.10)
Раскроем скобки
.
(2.11)
Проведя сокращения и перегруппируя члены уравнения, получим
.
(2.12)
Аналогично получаем уравнения равновесия относительно осей у и z
.
(2.13)
(2.14)
Таким образом, скомпонована система уравнений (2.12, 2.13, 2.14) равновесия жидкости, которую впервые получил Л.Эйлер
(2.15)
2.3 Основное уравнение гидростатики
Преобразуем систему уравнений (2.15). Для этого умножим первое уравнение на dx, второе – на dy, третье – на dz
.
(2.16)
Сложив левые и правые части уравнения системы, получим дифференциальное уравнение равновесия жидкости
.
(2.17)
Правая часть уравнения представляет
собой полный дифференциал давления
,
тогда можно
записать вместо (2.17)
.
(2.18)
Полученное уравнение является основным уравнением гидростатики в дифференциальной форме. Однако, гораздо чаще пользуются уравнением в более простой форме, когда из объёмных сил действует только сила тяжести. В этом случае Ax=0, Ay=0, Az= - g и уравнение запишется в виде
.
(2.19)
Проинтегрировав (2.19), получим основное уравнение гидростатики в виде
.
(2.20)
Проиллюстрируем
полученное уравнение. Для этого рассмотрим
замкнутый сосуд с жидкостью, плотность
которой
и на поверхности которой давление ро
Рис. 2.2. Замкнутый сосуд с жидкостью
Выбираем произвольную точку 1, расположенную на высоте z1. На основании основного уравнения гидростатики (2.20) можно записать
(2.21)
здесь p1 - гидростатическое давление в точке 1;
z1 - высота положения выбранной точки над плоскостью сравнения.
Сумма гидростатического давления и произведения ρgz является величиной, постоянной для данного сосуда. Если для сравнения выберем точку 0 на поверхности жидкости, высота которой z0 , то уравнение (2.21) приобретёт вид
откуда,
(2.22)
где (z0- z1)= h1 глубина погружения точки 1.
Соответственно, давление в произвольной точке будет равно сумме давления на поверхности жидкости плюс давление столба жидкости над этой точкой
(2.23)
Полученное уравнение (2.23) – это ещё одна, часто употребляемая формула основного уравнения гидростатики.