Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лисин Конспект ГГД.07.doc
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
12.29 Mб
Скачать

11.1.2.Теплопроводность

Теплопроводность, которую часто называют кондукцией, это перенос тепла внутри тела от участков тела с большей температурой к участкам тела с меньшей температурой. Этот перенос тепла может происходить и при непосредственном контакте от тела к телу. Процесс этот осуществляется самопроизвольно в виде переноса импульса энергии от молекулы к молекуле. Чем меньше расстояние между молекулами, тем лучше проводимость тепла. И, следовательно, теплопроводность металлов поэтому высока, теплопроводность жидкостей значительно хуже, а теплопроводность газов исчезающе мала. Поэтому воздух (при условии его неподвижности, при отсутствии конвекции) является замечательной изоляцией. Явление теплопроводности легко наблюдать при нагревании металлического стержня с одного конца. При этом теплота распространяется по всему телу, что объясняется возбуждением электронов, передающих это возбуждение дальше.

11.1.3. Лучистый теплообмен

Одновременно для обозначения процесса лучистого теплообмена применяются также термины — тепловое излучение и радиация. Лучистый теплообмен — это процесс переноса тепла в виде электромагнитных волн. При этом происходит двойное взаимное превращение — тепловая энергия превращается в лучистую, а затем лучистая — в тепловую. Часть внутренней энергии тела превращается в электромагнитные волны, которые распространяются в пространстве. На пути они встречают другое тело, которое поглощает эту энергию, волны опять превращаются во внутреннюю энергию. Скорость распространения тепловых электромагнитных волн равна скорости света. Разница между тепловым и световым лучом только в величине длин их волн.

Как правило, элементарные виды теплообмена встречаются в чистом виде редко. Обычно наблюдается их совместное протекание в различных комбинациях. Например, в котлах тепловом потоке от топочных газов к внешней поверхности труб участвуют все три вида теплообмена — конвекция, излучение и теплопроводность. Далее сквозь слой металла и слой накипи процесс идет только за счет теплопроводности, а от внутренней поверхности труб к воде осуществляется теплоотдача.

То есть на отдельных этапах процесса перехода тепла элементарные виды теплообмена могут находится в самом различном сочетании.

Основными факторами, влияющими на интенсивность теплообменных процессов, являются:

  1. температурный напор (разность температур) между средами или участками тел;

  2. физические свойства сред, обменивающихся теплом.

    1. Контрольные вопросы

  1. Назовите элементарные способы переноса тепла.

  2. Что такое процесс теплопередачи?

  3. Как рассчитать количество теплоты переходящее от одной среды к другой в результате теплопередачи?

  4. Что такое конвективный теплообмен?

  5. Как определить количество теплоты при теплоотдаче по формуле Ньютона?

  6. Охарактеризуйте процесс кондукции (теплопроводности).

  7. Какие факторы влияют на интенсивность процессов теплообмена?

12. Основной закон теплопроводности

12.1. Температурное поле

При различной температуре разных участков тела возникает самопроизвольный процесс переноса тепла от участков с более высокой температурой к участкам с низкой температурой. Возникновение процесса вызывается свойством, которое называется теплопроводностью. Перенос энергии происходит из-за энергетического взаимодействия между молекулами, атомами, электронами. Процесс теплопроводности связан с распределением температуры внутри тела и поэтому необходимо установить понятия температурного поля и градиента температуры.

Температура характеризует тепловое состояние тела, определяя степень его нагретости. И если происходит процесс теплопроводности в теле, значит температура различных участков его отличается. Совокупность значений температуры для всех точек тела в данный момент времени называется температурным полем. Уравнение температурного поля имеет вид:

t = f(x,y,z,), (12.1)

где t — температура тела в точке;

x, y, z — координаты точки;

 — время.

Если температура меняется во времени, такое температурное поле называется нестационарным, оно соответствует неустановившемуся нестационарному процессу теплопроводности, а если температура не меняется во времени — температурное поле — стационарное и процесс теплопроводности стационарный (установившийся).

Температура может быть функцией одной, двух или трех координат. Соответственно этому и температурное поле называется одно-, двух-, или трехмерным. У одномерного поля наиболее простой вид уравнения t = f(x). Например, при стационарном процессе теплопроводности через плоскую стенку.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]