
- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
1.2.1 Пример решения задачи
Определить плотность и удельный вес
газа при температуре t2
= 400oC,
если плотность его при температуре t1
= 10oC
равна
=
1,3
Для решения этой задачи необходимо
вспомнить закон изменения плотности
газов в зависимости от температуры при
постоянном давлении
Тогда можно записать
Отсюда значение искомой плотности
Необходимо однако помнить, что значения
температур Т1, Т2
необходимо подставлять в градусах
Кельвина. Т1 = t1
+ 273 = 10 + 273 = 283 K.
Т2 = t2 + 273 = 400 + 273 = 673 K.
0,55
Удельный вес при этих условиях
.
1.2.2 Пример решения задачи
Определить дополнительное количество
воды, которое должен подать насос в
заполненный водой трубопровод диаметром
d = 400 мм, длиной
=
50 м, чтобы давление в нем поднялось от
атмосферного на величину
40
ат, если коэффициент объемного сжатия
воды
Па-1.
При решении задачи необходимо все
заданные величины перевести в систему
СИ. Диаметр трубопровода d
= 400 мм = 0,4 м; величина изменения давления
Па.
Зная, что коэффициент объемного сжатия
определяется по формуле (6)
,
можно вычислить дополнительное количество
воды, которое вызовет повышение давления
на
Предварительно необходимо рассчитать
первоначальный объем трубы, зная, что
труба имеет цилиндрическую форму
м3.
м3.
Контрольные вопросы
Что такое жидкость?
Назовите основные отличия капельных жидкостей от газов.
Что такое плотность вещества?
Как изменяется плотность в зависимости от изменения температуры?
Что такое удельный вес? Как связаны удельный вес и плотность?
Что такое сжимаемость жидкости? Какова размерность коэффициента
объемного сжатия?
Почему в формуле коэффициента сжимаемости имеется минус? Какая
связь между коэффициентом сжимаемости и модулем объемной упругости?
Что такое температурное расширение? Напишите формулу коэффициен-
та температурного расширения, какова его размерность?
Что такое вязкость реальной жидкости? Закон Ньютона.
Опишите типы вязкости и связь между ними.
Как изменяются вязкость жидкости и вязкость газов при изменении тем-
пературы?
2. Гидростатика
2.1 Гидростатическое давление и его свойства
Гидростатика — это раздел изучающий законы равновесия жидкости. В жидкости, находящейся в состоянии покоя, не проявляются силы вязкости, и поэтому такая жидкость характеризуется свойствами, близкими к «идеальной» жидкости. Поэтому почти все задачи гидростатики решаются с большой степенью точности.
На жидкость в состоянии покоя действуют внешние силы. Эти внешние силы можно разделить на массовые и поверхностные. Массовые силы действуют на каждую частицу массы в данном объёме, они пропорциональны величине массы жидкости. Это сила тяжести и сила инерции. В случае, если жидкость однородна (ρ=const), массовые силы будут пропорциональны объёму, и их можно называть объёмными.
Поверхностные силы — это силы, действующие на каждый элемент поверхности, ограничивающей объём жидкости, они пропорциональны площади этой поверхности. К поверхностным силам можно отнести силу давления и силу трения, если жидкость двигается.
Вследствие действия внешних сил внутри жидкости возникает напряжение, которое является гидростатическим давлением. Гидростатическое давление в произвольной точке внутри жидкости — это сила, действующая на поверхности элементарного параллелепипеда, описанного вокруг этой точки.
Гидростатическое давление имеет два основных свойства. Первое свойство: гидростатическое давление всегда направлено по внутренней нормали к поверхности, ограничивающей рассматриваемый объём жидкости, т.е. силы гидростатического давления являются силами сжимающими. Если бы было наоборот, в жидкости началось бы движение частиц от рассматриваемой точки. Второе свойство: величина гидростатического давления в произвольной точке по всем направлениям одинакова. Иначе начала бы мигрировать в жидкости сама точка.