- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
Пример решения задачи
Определить
параметры узловых точек цикла, термический
КПД, величины подведенного и отведенного
тепла, работы в идеальном цикле ДВС с
изохорным подводом тепла, если p1 = 100000
Па, t1 = 20°C,
Рабочее тело – воздух. Цикл в тепловой
и рабочей диаграммах изображен на
рис. 8.1,а.
Так
как процесс адиабатный, то
,
откуда p2 = p1k
= 10000·3,61,4 = 600000 Па.
Температуру
в точке 2 можно найти также из уравнений
адиабатного процесса
.
Отсюда T2
= T1k-1
= 293·3,60,4 = 489 К.
Удельный
объем в точке 2:
м3/кг.
Рис. 8.1,а. Цикл Отто в pv- и Ts–диаграммах
Удельный объем рабочего тела в точке 1 из p1v1 = RT1
м3/кг.
Давление
в точке 3 можно определить из выражения
степени повышения давления
,
откуда p3 = p2
= 3·600000 = 1800000 Па.
Так ка процесс 2-3 изохорный, определяем температуру в точке 3:
.
Тогда T3 = T2 = 3·489 = 1467 К.
Температура в точке 4
К,
где v3 = v2, а v4 = v1.
Давление в точке 4:
Па.
Количество подведенного в процессе 2-3 тепла
q1 = cv(T3 – T2) = 713·(1467 – 489) = 697314 Дж/кг.
Количество отведенного тепла
q2 = cv(T4 – T1) = 713·(874 – 293) = 414253 Дж/кг.
Работа цикла
l = q1 – q2 = 697314 – 414253 = 283061 Дж/кг.
Термический КПД цикла с изохорным подводом тепла
.
Проверяем термический КПД:
.
8.1.2 Цикл Дизеля
В двигателях, работающих по циклу Дизеля, в цилиндр со сжатым воздухом через специальную форсунку впрыскивается топливо (мазут, соляровое масло, дизтопливо, керосин), т.е. смесеобразование происходит в отличие от цикла Отто не вне, а внутри цилиндра. В среде сжатого воздуха (давление 3…5 МПа и температура до 1000 К) топливо самовоспламеняется и медленно сгорает практически при постоянном давлении. Распыление топлива производят сжатым (5…6 МПа) воздухом. Сжатие воздуха создаётся специальным компрессором высокого давления.
Идеализированные замкнутые циклы осуществленные с чистым воздухом представлены в p-V и T-S диаграммах (рис.8.2)
В
точке 1 происходит процесс засасывания
чистого атмосферного воздуха. Кривая
1-2 показывает процесс адиабатного сжатия
этого воздуха до давления p2.
Обычно, степень сжатия достигает в цикле
Дизеля значений
В точке 2 начинается впрыск топлива в цилиндр, которое самовоспламеняется и сгорает при постоянном давлении, что обеспечивает расширение газа от V2 до V3 (при p=const).
В точке 3 процесс впрыска топлива и его сгорания оканчивается и начинается адиабатное расширение рабочего тела (процесс трансформации теплоты в работу).
В точке 4 открывается выхлопной клапан цилиндра, и давление в цилиндре понижается до атмосферного – идёт процесс изохорного теплообмена 4-1, газ высокого давления и температуры выталкивается в атмосферу. Как видно из диаграммы, идеализированный цикл Дизеля состоит из двух адиабат (адиабата сжатия 1-2 и адиабата расширения 3-4), изобары 2-3, по которой осуществляется подвод тепла q1 и изохоры 4-1, по которой осуществляется отвод тепла q2 к холодному источнику.
Рис. 8.2. Изображение идеального цикла двигателя с подводом тепла при постоянном давлении а) в рабочей диаграмме б) тепловой диаграмме
Вычислим
термический кпд этого цикла. Для этого
введём дополнительные обозначения –
степень предварительного расширения
и степень последующего расширения .
(8.6)
(8.7)
Из общего выражения для термического кпд любого цикла
С учётом того, что в изобарном процессе 2-3
И в изохорном процессе 4-1
Получаем
Аналогично методике анализа цикла Отто выразим каждую последующую температуру через предыдущую.
Для адиабатного процесса 1-2
отсюда
Для изобарного процесса 2-3
Тогда
Для адиабатного процесса (3-4)
отсюда
,
Так
как V1=V4
и
, то
Можно
записать
Подставляя полученные значения температур в уравнение термического кпд получим
=1-
(8.8)
Анализ соотношения (8.8) показывает, что термический кпд цикла Дизеля тем выше, чем больше степень сжатия (как и в цикле Отто) и чем выше величина (степени предварительного расширения).
Для сравнения циклов Отто и Дизеля необходимо принимать в обоих циклах либо одинаковую величину степени сжатия , либо наивысшую температуру рабочего тела в цикле (T3). При этом исходные параметры рабочего тела в начальной точке цикла (p1, V1, T1) должны быть одинаковыми в обоих циклах.
Для случая, когда в циклах одинаковые степени сжатия из выражений (8.5) и (8.8) видно что термический кпд цикла Отто выше термического кпд Дизеля. Однако главным преимуществом цикла Дизеля является возможность работать при более высоких степенях сжатия (по сравнению с циклом Отто). Поэтому более правомерно сравнение при условии одинаковой наивысшей температуры цикла (T3).
Рис. 8.3. Сравнение циклов Отто и дизеля
На рис. 8.3 в диаграмме T-S совмещены циклы Отто и Дизеля при одинаковых начальных (p1, V1, T1) параметрах и одинаковой максимальной температуры. Так как изохора идёт круче изобары, очевидно, что тепла, трансформируемого в работу в цикле Дизеля больше и следовательно, термический кпд цикла Дизеля выше.
При сравнении обоих циклов при равной работе и максимальном давлении видно, что тепла q2 в цикле Отто больше и, следовательно, цикла Отто ниже.
Кроме того, двигатель Дизеля может работать на менее качественном и потому более дешевом топливе.
Известным недостатком двигателя Дизеля (по сравнению с циклом Отто) является необходимость затрат работы на привод устройства для распыления топлива.
