- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
7.3. Второй закон термодинамики
Второй
закон (второе начало) термодинамики был
открыт опытным путем в результате
анализа работы тепловых двигателей.
Выяснилось, что для непрерывного
производства работы рабочее тело должно
совершить круговой цикл. При этом работа
сжатия должна быть меньше работы
расширения. А для этого температура
рабочего тела при сжатии должна быть
ниже температуры при расширении. Для
производства работы необходимо наличие
трех тел: рабочего тела, горячего
источника и холодного источника теплоты.
И если первый закон устанавливает
количественное соотношение между
теплотой
и работой
,
то второй закон определяет условия, при
которых должен работать тепловой
двигатель.
Преобразование теплоты в работу возможно только при условии передачи части теплоты холодному источнику.
В 1850 году Клаузиус предложил формулировку второго начала термодинамики: Теплота не может сама собой переходить от более холодного тела к более нагретому.
Формулировка В. Томсона (лорда Кельвина) звучит так: Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу.
С этой формулировкой перекликается предлагаемая М. Планком: Невозможно построить действующую машину, все действие которой сводилось бы к поднятию груза и охлаждению теплового источника.
Суть этих высказываний сводится к необходимости иметь два источника теплоты – горячий и холодный, потому что для получения работы в замкнутом цикле необходимо не только подвести, но и отвести теплоту.
Резюмируя можно отметить, что для непрерывного действия теплового двигателя (или холодильной машины) необходимо на одном участке цикла теплоту к рабочему телу подводить, а на другом – отводить.
7.4. Цикл Карно
Простейший обратимый цикл, для осуществления которого необходимо рабочее тело и два источника теплоты (горячего и холодного).
К
рабочему телу в т. А (рис. 7.6) от горячего
источника подводится теплота, газ
расширяется (толкая поршень и производя
работу). Процесс A-B
– изотермический, поэтому что бы не
произошло понижение температуры при
расширении газа – к нему подводится
теплота. В точке B процесс
подвода теплоты прекращается, и дальнейшее
расширение идет с понижением температуры
от значения
до значения
.
Этот процесс в силу скоротечности идет
без теплообмена (по адиабате), в результате
его производится работа за счет внутренней
энергии газа. Т.е. газ отдавая свою
внутреннюю энергию (снижаются и давление
газа, и его температура), трансформирует
ее в работу (например толкая поршень
или вращая ротор турбины). В точке C
процесс расширения оканчивается. После
этого газ необходимо сжать за счет
приложения внешней работы. В этом
процессе от газа отводится теплота к
холодному источнику, процесс идет по
изотерме, поэтому температура газа не
изменяется. В точке D отвод
теплоты прекращается, дальнейшее сжатие
происходит без теплообмена, процесс
D-A идет по
адиабате. Работа расширения полученная
в цикле – представляет собой площадь
под кривой A-B-C
в
диаграмме. Работа, затраченная на сжатие
– площадь под кривой C-D-A.
И тогда площадь внутри замкнутой кривой
A-B-C-D-A
представляет собой полезную работу,
полученную в цикле. Известно, что
(7.22)
и
;
(7.10)
Рис. 7.6 Цикл Карно а) изображение цикла Карно в Ts-диаграмме; б) изображение цикла Карно в pv-диаграмме.
Подставив в эти формулы значения соотношений объемов из уравнений адиабатных процессов получим выражение
(7.23)
Анализируя
выражение (7.23) можно увидеть, что в
идеальном цикле Карно значение
термического КПД не может достигнуть
единицы, так как температура
,
а температура
К.
Ни один реальный цикл не может достичь термического КПД равного цикла Карно. Цикл Карно служит эталоном, с которым сравнивают реальные циклы. Анализируя цикл Карно, можно также сделать вывод, что цикла Карно не зависит от свойств рабочего тела, а только от температур горячего и холодного источников. Очевидно, что повышается при увеличении температуры горячего источника T1 или при уменьшении температуры холодного источника T2. Эта закономерность справедлива для всех циклов тепловых двигателей.
