- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
5 .2 Расчет сифонов
Сифон – это короткий трубопровод, по которому жидкость двигается из питающего резервуара в приемную емкость. Особенностью сифона является его способность поднимать жидкость в трубопроводе на высоту h выше ее уровня в питающем резервуаре. Принцип действия сифона основан на создании
вакуума в верхней части сифона. Для включения сифона в работу необходимо предварительно заполнить его жидкостью или создать в нем вакуум с помощью специального вакуум-насоса. Расчет сифона состоит в определении его производительности или максимально возможной высоты транзитного подъема жидкости над уровнем жидкости в питающем резервуаре. Движущей силой процесса истечения жидкости через сифон является разность уровней жидкости в резервуарах, которая расходуется на преодоление сопротивлений (местных и по длине)
,
(5.5)
где L – суммарная длина трубы сифона, м;
- сумма коэффициентов местных сопротивлений.
Отсюда
.
Тогда
.
(5.6)
Максимально возможная высота сифона h определяется из уравнения Бернулли для сечений 1-1 и 2-2
,
(5.7)
здесь - длина трубопровода до сечения 2-2;
- сумма коэффициентов местных сопротивлений до сечения 2-2.
Отсюда
,
здесь
.
И тогда
,
где Рвак – вакуум, возникающий в сечении 2-2.
Теоретически возможная высота hвак = 10,33 м водяного столба. Однако, учитывая потери энергии в сифоне, а также возможность возникновения явления кавитации, значение hвак не должно превышать 7 – 8 м.
5.2.1 Пример решения задачи
При откачке воды из отсека использовали
сифон диаметром 0,2 м. Определить
производительность сифона, а также
величину максимального вакуума
возникающего в нем, если разность уровней
воды в отсеках составляла Н = 4,2 м,
длина вертикальных и горизонтальных
участков сифона
м,
горизонтальный участок расположен на
h = 2 м выше уровня
жидкости питающего отсека. Принять
значения коэффициентов: жидкостного
трения
;
местного сопротивления на входе в трубу
сифона
,
местного сопротивления поворота
;
местного сопротивления на выходе из
трубы
.
Производительность сифона можно рассчитать из формулы (5.6)
где
-
полная длина трубы сифона,
-
сумма коэффициентов местных сопротивлений.
м3/с.
Вакуум, возникающий в сифоне, расходуется на подъем жидкости на высоту h = 2 м, и преодоление местных сопротивлений.
Определим значение вакуума, которое возникает в конце горизонтального – на повороте к вертикальному стояку
Здесь
-
длина трубопровода до точки, где
установлен вакууметр,
=
14.
сумма
местных сопротивлений трубопровода до
точки максимального вакуума
0,5 + 0,5 = 1.
м
вод. ст.
При этом вакуумметр показал бы значение вакуума
Па
0,42
ат.
5.4 Расчет мощности насосного агрегата
Н
асосы
– это гидравлические машины, преобразующие
механическую энергию двигателя в энергию
движущейся жидкости. Большая потребность
в насосах и их широкое использование
человечеством привело к разработке
почти 300 типов насосов, которые отличаются
не только конструктивными особенностями,
но и принципом действия (центробежные,
поршневые, винтовые, эжекторные,
шестеренные, вибрационные и т.д.). Наиболее
широкое применение нашли центробежные
насосы, обладающие значительной
производительностью, простотой
конструкции и эксплуатации и относительно
высоким КПД. В теории насосов существует
ряд терминов и определений, принадлежащих
насосам всех типов. На рис. 5.2 показана
схема работы насоса, включенного в
систему подачи воды из источника
водоснабжения в напорный резервуар.
При работе насоса во всасывающем
трубопроводе и всасывающей камере
создается вакуум, который обеспечивает
подъем воды.
Этого вакуума должно хватить для подъема воды от уровня ее в источнике водоснабжения до оси насоса, и на преодоление всех потерь напора во всасывающей линии. Вертикальное расстояние от уровня воды до центра насоса называется геодезической высотой всасывания, потери напора во всасывающей линии называются потерями на всасывании. Жидкости, поступающей в насос, сообщается энергия, которая тратится на подъем жидкости до необходимого уровня и на преодоление сопротивлений напорного трубопровода. Вертикальное расстояние от оси насоса до уровня жидкости в напорном резервуаре называется геодезической высотой нагнетания, потери напора в напорной линии – потерями при нагнетании. Полный напор, который создает насос – это разность удельных энергий потока жидкости в сечениях 1-1– конец всасывающего, и 2-2 – начало нагнетательного трубопроводов. В этих сечениях обычно устанавливают вакуумметр и манометр.
Принимая в качестве плоскости сравнения уровень жидкости в питающем колодце, можно записать
,
(5.8)
, (5.9)
здесь Zм и Zв –высоты расположения манометра и вакуумметра;
Р1, Р2 – абсолютное давление во всасывающем и нагнетательном
трубопроводах в сечениях 1-1 и 2-2;
- скорость жидкости во всасывающем и
нагнетательном
трубопроводах.
Вакуумметр показывает вакуум на входе в насос, манометр – избыточное давление на выходе из насоса
Рвак = Рат – Р1.
Ризб = Р2 – Ратм.
Если показания вакуумметра и манометра выразить в виде напора (в метрах водяного столба), то можно записать
.
Отсюда
(5.10)
Подставляя эти значения в уравнение (125), получим
(5.11)
Следует заметить, что обычно манометр и вакуумметр стремятся расположить на одном уровне и тогда Zм – Zвак = 0.
Сумму показаний (Нман + Нвак) выраженных в метрах называют манометрическим напором насоса. И, если диаметры всасывающего и нагнетательного трубопроводов одинаковы, то полный напор насоса будет равен напору манометрическому
Н = Нман + Нвак. (5.12)
Объем жидкости, который подает насос в единицу времени, называется производительностью насоса Q, м3/с.
Полезная мощность насоса, т.е. та мощность, которая передается насосом жидкости для подъема ее и перемещении с преодолением всех сопротивлений
,
Вт, (5.13)
здесь Н – полный напор насоса, м;
Q – производительность насоса, м3/с;
Р – давление, вырабатываемое насосом, Па.
Давление, вырабатываемое насосом, обычно определяют как сумму показаний манометра и вакуумметра.
Мощность, потребляемая насосом, естественно, будет больше полезной мощности
,
Вт, (5.14)
где
- кпд насоса, учитывающий потери мощности
в самой конструкции насоса.
С учетом потерь мощности в передаче и электродвигателе мощность насосного агрегата составит
,
(5.15)
где
-
кпд передачи и электродвигателя;
К – коэффициент запаса, значение которого зависит от величины полезной мощности.
При
< 50 кВт К
1,15…1,25.
При > 50 кВт К 1,05…1,10.
