
- •Содержание
- •5.2.1 Пример решения задачи 58
- •5.3.1 Пример решения задачи 61
- •10.1. Основные понятия 117
- •Гидромеханика
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Примеры решения задач
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Закон Паскаля
- •2.7 Сила давления жидкости на плоские фигуры
- •2.8 Закон Архимеда
- •2.8.1 Пример решения задачи
- •Контрольные вопросы
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Примеры решения задач
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5 .2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.3.1 Пример решения задачи
- •Контрольные вопросы
- •5.4. Общие указания и задания к расчетно-графической работе
- •Термодинамика
- •6. Основные понятия и определения
- •6.1. Термодинамика
- •6.2. Термодинамические параметры и процессы
- •6.2.1. Термодинамическая система, окружающая среда и рабочее тело
- •6.2.2. Внутренняя энергия термодинамической системы.
- •6.2.3. Первый закон термодинамики
- •6.3. Параметры состояния и уравнение состояния газа
- •6.3.1. Параметры состояния
- •6.3.2. Идеальный газ
- •6.3.3. Основные законы идеальных газов.
- •1.3.4. Уравнение состояния идеального газа
- •Примеры решения задач
- •6.4. Газовые смеси
- •6.5. Теплоёмкость газа
- •6.6. Работа, внутренняя энергия и энтальпия
- •Контрольные вопросы
- •7. Второй закон термодинамики
- •7.1. Основные термодинамические процессы
- •7.1.1. Методика исследования расчета термодинамических процессов
- •7.1.2. Расчеты термодинамических процессов
- •Примеры решения задач
- •7.2. Циклы, понятие термического кпд
- •7.3. Второй закон термодинамики
- •7.4. Цикл Карно
- •Пример решения задачи
- •Контрольные вопросы
- •8. Теплосиловые газовые циклы
- •8.1 Циклы поршневых двигателей внутреннего сгорания
- •8.1.1 Цикл Отто
- •Пример решения задачи
- •8.1.2 Цикл Дизеля
- •Пример решения задачи
- •8.1.3 Цикл Тринклера
- •Пример решения задачи.
- •8.2 Газотурбинные установки
- •8.2.1 Общая характеристика
- •8.2.2 Схема и цикл простейшей гту
- •Пример решения задачи.
- •8.2.3 Способы повышения термодинамического кпд гту
- •Контрольные вопросы
- •9. Теплосиловые паровые циклы
- •9.1. Процесс парообразования и виды пара.
- •9.2 Цикл Ренкина
- •Контрольные вопросы
- •10. Холодильные циклы
- •10.1. Основные понятия
- •10.2 Судовые холодильные установки
- •10.3 Цикл воздушной холодильной установки
- •Контрольные вопросы
- •10.4. Общие указания и задания к расчетно-графической работе
- •Теплопередача
- •11. Общая характеристика процессов теплообмена
- •11.1. Теплопередача
- •11.1.1. Теплоотдача
- •11.1.2.Теплопроводность
- •11.1.3. Лучистый теплообмен
- •Контрольные вопросы
- •12. Основной закон теплопроводности
- •12.1. Температурное поле
- •12.2. Градиент температуры
- •12.3. Закон Фурье
- •12.4. Коэффициент теплопроводности
- •12.5. Теплопроводность плоской стенки
- •12.5.1. Однослойная стенка
- •12.5.2. Многослойная стенка
- •12.5.3. Примеры решения задач
- •12.6. Теплопроводность цилиндрической стенки
- •12.6.1. Однослойная стенка (труба)
- •2.6.2. Многослойная стенка
- •12.6.3. Упрощение расчетных формул
- •12.6.4. Примеры решения задач
- •12.7. Контрольные вопросы
- •13. Конвективный теплообмен
- •13.1. Общие понятия и определения
- •3.2. Основы теории подобия
- •13.3. Теплоотдача при обтекании плоской поверхности (пластины)
- •13.4. Теплоотдача при течении жидкости в трубе
- •3.4.1. Примеры решения задач
- •13.5. Теплоотдача при естественной конвекции
- •13.5.1. Теплоотдача в неограниченном пространстве.
- •13.5.2. Примеры решения задач
- •13.6.Теплоотдача при поперечном обтекании труб
- •13.6.1. Одиночные трубы
- •13.6.2. Поперечное обтекание пучков труб
- •13.6.3. Пример расчета задачи
- •Контрольные вопросы
- •14. Теплообмен при изменении агрегатного состояния
- •14.1. Теплообмен при кипении
- •14.1.1. Примеры решения задач
- •14.2. Теплоотдача при конденсации
- •14.2.1. Общее представление о процессе конденсации
- •14.2.2. Капельная конденсация
- •14.2.3. Теплоотдача при плёночной конденсации
- •14.2.4. Примеры решения задач
- •Контрольные вопросы
- •15. Тепловое излучение (лучистый теплообмен)
- •5.1. Общие сведения
- •15.2. Законы теплового излучения
- •15.3. Лучистый теплообмен между телами
- •15.4. Тепловое излучение газов
- •5.5. Примеры решения задач
- •Контрольные вопросы
- •16. Процессы теплопередачи
- •16.1. Теплопередача через стенки
- •16.1.1. Теплопередача через однослойную плоскую стенку
- •16.1.2. Многослойная плоская стенка
- •16.1.3. Однослойная цилиндрическая стенка (труба)
- •16.1.4. Многослойная цилиндрическая стенка
- •16.1.5. Упрощение расчетных формул
- •16.1.6. Примеры решения задач
- •16.2. Теплопередача через ребристые поверхности
- •16.3. Интенсификация процессов теплообмена
- •Контрольные вопросы
- •17. Общие указания и задания к расчетно-графической работе
- •Вопросы
- •Рекомендуемая литература
- •Основи теплоенергетики
- •65029, М. Одеса, вул.. Дідріхсона, 8.
3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
Р
ассмотрим
элементарную струйку идеальной жидкости.
Выделим в ней отсек 1-2, ограниченный
сечениями 1-1 и 2-2. В сечении 1-1 площадью
dS1 (рис.3.4), действует
давление p1, а скорость движения
жидкости U1. В сечении 2-2 –
давление p2, площадь dS2
, скорость U2. Центры
тяжести выбранных сечений расположены
на высотах Z1 и Z2
над плоскостью х0у.
Если бы жидкость, расположенная в трубке
тока между сече ниями 1-1 и 2-2 былa
неподвижна, то можно было бы записать
уравнение равновесия жидкости в
соответствии с основным уравнением
гидростатики
.
или умножив все члены на g, получим
.
(3.13)
Уравнение (3.13) описывает закон сохранения
потенциальной энергии в условиях
покоя жидкости. Действительно, если
1 кг жидкости поднять на высоту Z1
над условной плоскостью сравнения, а
под действием давления в этом сечении
жидкость в трубке пьезометра сможет
подняться еще на высоту
,
то она обладает суммарной удельной
потенциальной энергией единицы массы
Е1
пот=
,
.
(3.14)
При движении жидкость обладает также кинетической энергией. Удельная кинетическая энергия единицы массы жидкости для первого сечения
,
.
(3.15)
Присоединяя значение кинетической энергии к суммарной потенциальной энергии жидкости в состоянии покоя получим уравнение, характеризующее равновесие жидкости в условиях движения
,
.
(3.16)
А так как действует закон сохранения энергии, то можно записать
.
(3.17)
Уравнение (3.17) устанавливает связь между геометрическим положением, давлением и скоростью жидкости в произвольном сечении. Оно называется уравнением Бернулли для элементарной струйки идеальной жидкости.
Анализируя уравнение можно увидеть,
что расширение струйки (увеличение
площади живого сечения струйки) приводит
к уменьшению скорости струйки, а это
уменьшает кинетическую энергию. А так
как полная энергия струйки в любом
сечении является величиной постоянной,
т.е. сумма членов является константой,
то увеличивается потенциальная энергия
давления жидкости в данном сечении. И
наоборот, уменьшение площади живого
сечения струйки вызывает увеличение
скорости и, следовательно, увеличение
кинетической энергии, что приводит к
уменьшению энергии потенциальной и
соответственному падению давления.
Проведем анализ размерности всех членов
входящих в уравнение (3.17) помня о том,
что силы инерции и силы тяжести были
отнесены к единице массы жидкости, то
есть члены уравнения, в которых
присутствует скорость либо ускорение
необходимо помножить на
.
gZ
=
=
=
=
.
Мы получили размерность удельной энергии, энергии отнесенной к единице массы жидкости ( – это энергия 1 кг жидкости).
=
=
=
,
=
=
=
.
Уравнение (3.17) иллюстрирует энергетический смысл уравнения Бернулли – в любом сечении струйка жидкости обладает одной и той же суммарной энергией. Энергия трансформируется переходя из одного вида в другой при изменении условий течения, но сумма потенциальной и кинетической энергии остается постоянной. Рассмотрим еще один вид уравнения Бернулли – вид иллюстрирующий геометрический смысл. Для этого разделим все члены уравнения (3.17) на g
.
(3.18)
При геометрической интерпретации трактовки уравнения Бернулли все члены уравнения (3.18) могут быть представлены отрезками. Здесь
z – высота положения выбранного сечения над плоскостью сравнения, м;
-
пьезометрическая высота или высота, на
которую поднимется жидкость под действием
давления в заданной точке, если в эту
точку поместить пьезометр, м;
- скоростной напор, м;
-
полный гидростатический напор, м;
Н – полный гидродинамический напор, м.
Все члены уравнения (3.18) имеют линейную размерность – м.