Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭиУСУ_шпорка.doc
Скачиваний:
0
Добавлен:
24.12.2019
Размер:
6.11 Mб
Скачать

14. Двухобмоточный однофазный трансформатор. Принцип действия. Схема замещения

Трансформаторы напряжения двух- или трехобмоточные предназначены как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю. Трансформаторы напряжения имеют два назначения: изолировать вторичную обмотку; понизить измеряемое напряжение до стандартного значения 100 В. Трансформаторы напряжения различают: по числу фаз однофазные и трехфазные; по числу обмоток - двухобмоточные и трехобмоточные; по классу точности - 0,2; 0,5; 1,0; 3; по способу охлаждения - с масляным охлаждением, с воздушным охлаждением; по способу установки - для внутренней установки, для наружной установки и для КРУ.

На рис. 1 представлена схема включения трансформаторов напряжения с обозначениями первичной и вторичной обмоток. Однофазный двухобмоточный трансформатор напряжения применяется в установках как однофазного, так и трехфазного тока. В последнем случае он включается на линейное напряжение. Один из выводов вторичной обмотки для обеспечения безопасности при обслуживании заземляется. Основными параметрами трансформаторов напряжения являются: номинальные напряжения обмоток, т.е. напряжения первичной и вторичной обмоток, указанные на щитке; номинальный коэффициент трансформации, т. е. отношение номинального первичного напряжения к номинальному вторичному погрешность по напряжению % угловая погрешность, т. е. угол между вектором первичного напряжения и повернутым на 180° вектором вторичного напряжения, выраженный в угловых градусах (минутах).

Рис. 1. Однофазный двухобмоточный трансформатор напряжения: а - присоединение трансформатора напряжения к трехфазной сети без нулевого провода; б - расположение выводов (Л-X - выводы ВН; а-х - выводы НН)

Особо следует сказать о трансформаторах напряжения высокого и сверхвысокого напряжения. Как было отмечено, трансформаторы напряжения передают очень малую мощность, поэтому практически в таких трансформаторах напряжения определяющим является вопрос обеспечения изоляции между первичной и вторичной цепями. Поэтому при напряжениях выше 500 кВ используются так называемые емкостные трансформаторы напряжения, состоящие из емкостного делителя напряжения (двух последовательно соединенных конденсаторов С1 и С2) и понижающего трансформатора, показанных на рис. 3. В современных РУ устанавливаются колонны конденсаторов высокочастотной связи для цепей автоматики и сигнализации. Поэтому, если использовать эту колонку связи CJ и добавить некоторый конденсатор отбора мощности С2, получим емкостной делитель. К конденсатору подключается трансформатор напряжения обычно на 12-15 кВ первичного напряжения. Для устойчивой работы в первичную цепь включается дополнительный реактор LR и высокочастотный заградитель 3. Таким образом, это устройство имеет существенно меньшую стоимость, чем трансформатор напряжения на полное первичное напряжение.

15. Обмотки машин переменного тока.

По конструкции катушек обмотки подразделяют на всыпные с мягкими катушками и обмотки с жесткими катушками или полукатушками. Мягкие катушки изготовляют из круглого изолированного провода. Для придания требуемой формы их предварительно наматывают на шаблоны, а затем укладывают в изолированные трапецеидальные пазы ; междуфазовые изоляционные прокладки устанавливают в процессе укладки обмотки. Затем катушки укрепляют в пазах с помощью клиньев или крышек, придают им окончательную форму (формируют лобовые части), осуществляют бандажирование обмотки и ее пропитку. Весь процесс изготовления всыпных обмоток можно полностью механизировать.

Жесткие катушки (полукатушки) изготовляют из прямоугольного изолированного провода. Окончательную форму им придают до укладки в пазы; одновременно на них накладывают корпусную и междуфазовую изоляцию. Всыпные обмотки имеют ряд преимуществ по сравнению с обмотками с жесткими катушками:

а) возможность полной механизации всего процесса изготовления обмотки;

б) упрощение технологий изготовления машины: намотку катушечных групп, а в ряде случаев и фаз обмотки выполняют без разрыва провода, что уменьшает число паек; укладку обмотки в пазы сердечника производят вне корпуса машины, что облегчает и удешевляет процесс обмотки и пропитки;

в) уменьшение длины вылета лобовых частей, что приводит к сокращению длины активной части машины и потерь энергии в обмотке;

г) применение в машине пазов трапецеидальной формы с уменьшенной шириной его шлица, что обеспечивает улучше ние использования зубцовой зоны, уменьшение магнитного сопротивления воздушного зазора, пульсации магнитного потока в нем и, как следствие, снижение величины намагничивающего тока и добавочных потерь.

Достоинством обмоток с жесткими катушками являются:

а) улучшение заполнения паза из-за применения проводов прямоугольного сечения;

б) повышение надежности обмотки из-за снижения вероятности появления производственных дефектов, так как в пазы укладывают готовые изолированные и проверенные катушки, которые подвергаются меньшим деформациям.

Поэтому всыпные обмотки получили широкое применение для асинхронных двигателей на напряжение до 1000 В и мощностью до 100 кВт. В двигателях мощностью свыше 100 кВт применение всыпных обмоток из круглого провода встречает значительные технологические трудности. Обмотки таких двигателей изготовляют в основном из жестких катушек, выполненных из прямоугольного провода.

По расположению катушек в пазах и размещению их лобовых частей различают однослойные, двухслойные (в том числе концентрические), одно-двухслойные обмотки.

Однослойные обмотки (рис. 3.18,а) наиболее пригодны для механизированной укладки, так как в этом случае обмотка должна быть концентрической и укладываться в пазы статора обеими сторонами катушки одновременно. Однако применение их приводит к увеличенному расходу обмоточного провода из-за значительной длины лобовых частей. Кроме того, в таких обмотках не представляется возможным выполнить укорочение шага, что приводит к ухудшению формы магнитного поля в воздушном зазоре, увеличению добавочных потерь, возникновению провалов в механической характеристике и повышению шума. Однако из-за своей простоты и дешевизны такие обмотки широко применяют в асинхронных двигателях небольшой мощности до 10 — 15 кВт.

16. Трехфазный асинхронный двигатель. Основные понятия и определения. Номинальные параметры. Скольжение. Допуски. Номинальные режимы работы (S-режимы). КПД, cosφ.

Неподвижная часть машины называется статор, подвижная – ротор. Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину. На рис. 2.1 показан сердечник статора в сборе. Станина (1) выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов (2), из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже – из алюминия. Обмотка статора состоит из трёх отдельных частей, называемых фазами. Начала фаз обозначаются буквами c1,c2,c3, концы – c4,c5,c6.

На щитке машины, закреплённом на станине, приводятся данные: Pн,Uн,Iн,nн, а также тип машины. Pн – это номинальная полезная мощность (на валу) Uн и Iн – номинальные значения линейного напряжения и тока для указанной схемы соединения. Например, 380/220, Y/∆, IнY/Iн∆. nн – номинальная частота вращения в об/мин.

Отличительный признак асинхронного двигателя состоит в том, что частота вращения 2 n ротора меньше синхронной частоты вращения 1 n магнитного поля статора.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения . Частота вращения поля статора относительно ротора определяется частотой скольжения . Отставание ротора от вращающегося поля статора характеризуется относительной величиной s , называемой скольжением: Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т.е. 0–100 %. Если s ≈ 0 , то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента, если s ≈ 1 – режиму короткого замыкания, при котором ротор двигателя неподвижен. Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается. Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 0,08 до 0,02, т.е. 8–2 %.

Мощность двигателя всегда зависит от режима работы и продолжительности включения. В соответствии с действующим стандартом существуют три основных номинальных режима работы электрических машин, различающиеся характером изменения нагрузки, и ряд дополнительных.

1) Продолжительный номинальный режим – когда при неизменной номинальной нагрузке Pн работа машины продолжается так долго, что температура всех ее частей успевает достигнуть установившихся значений Условное обозначение режима S1 . Различают продолжительный режим с неизменной нагрузкой P = const (рис. 6.14, а) и продолжительный режим с изменяющейся нагрузкой (рис. 6.14, б).

2) Кратковременный номинальный режим S 2 – когда периоды неизменной номинальной нагрузки чередуются с периодами включения двигателя (рис. 6.14, в)

3) Повторно-кратковременный номинальный режим S3 – когда кратковременные периоды номинальной нагрузки двигателя н t чередуются с периодами отключения двигателя (паузами), причем за период нагрузки превышение температуры всех частей не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы двигателя в повторно-кратковременном