
- •1. Электрические машины. Общие понятия и определения. Сферы применения. Соотношение двигателей в мире.
- •2. Электрические машины постоянного тока. Генераторы.
- •3. Двигатель постоянного тока. Принцип действия. Режимы работы. Кпд. Моменты: номинальный, пусковой, электромагнитный, на валу
- •5. Коммутация в машинах постоянного тока. Коммутация в коллекторных машинах. Степени искрения. Защита обмотки якоря. Подавление радиопомех.
- •6. Пуск двигателя постоянного тока
- •8. Исполнительные двигатели постоянного тока. Система относительных единиц.
- •9. Передаточные функции и структурные схемы исполнительного двигателя постоянного тока при якорном управлении.
- •10. Исполнительные двигатели постоянного тока. Якорное управление.
- •11. Исполнительные двигатели постоянного тока. Полюсное управление.
- •12. Тахогенератор постоянного тока.
- •13. Электрические машины переменного тока. Основные понятия и определения.
- •14. Двухобмоточный однофазный трансформатор. Принцип действия. Схема замещения
- •15. Обмотки машин переменного тока.
- •17. Синхронные двигатели
- •18. Трехфазный асинхронный двигатель. Принцип действия. Схема замещения
- •20. Пуск асинхронных двигателей с фазным и короткозамкнутым ротором
- •21. Способы плавного регулирования скорости трехфазного асинхронного двигателя
- •22. Способы ступенчатого управления (регулирования) скоростью трехфазного асинхронного двигателя.
- •24. Векторное управление двигателем переменного тока
- •25. Эффективность частотного регулирования в системах водоснабжения, водоотведения, отопления и вентиляции.
- •28. Включение трехфазного асинхронного двигателя в однофазную сеть.
- •30. Асинхронный тахогенератор
- •32. Линейный режим работы поворотного трансформатора
- •33. Поворотный трансформатор-построитель
- •34. Сельсины. Индикаторный режим работы
- •35. Сельсины. Трансформаторный режим работы
- •36. Сельсины. Дифференциальный режим работы
- •37. Сельсин-двигатель. Магнесины.
- •38. Индукционные датчики перемещения. Вращающиеся трансформаторы, резольверы, индуктосины
- •40. Датчики перемещения. Одно- и двухканальная схема измерительного преобразователя.
- •41. Требования к датчикам. Выбор разрядности ацп.
- •42. Кодовые оптические датчики считывания. Инкрементальные оптические датчики.
- •43. Виды движения. Основные понятия и определения.
- •46. Требования совместимости элементов. Унификация и нормализация. Степени защиты.
- •48. Выбор типа и параметров исполнительного двигателя. Типовые режимы работы
- •50. Методы проверки двигателей на нагрев. Коэффициент использования.
14. Двухобмоточный однофазный трансформатор. Принцип действия. Схема замещения
Трансформаторы напряжения двух- или трехобмоточные предназначены как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю. Трансформаторы напряжения имеют два назначения: изолировать вторичную обмотку; понизить измеряемое напряжение до стандартного значения 100 В. Трансформаторы напряжения различают: по числу фаз однофазные и трехфазные; по числу обмоток - двухобмоточные и трехобмоточные; по классу точности - 0,2; 0,5; 1,0; 3; по способу охлаждения - с масляным охлаждением, с воздушным охлаждением; по способу установки - для внутренней установки, для наружной установки и для КРУ.
На рис. 1 представлена схема включения трансформаторов напряжения с обозначениями первичной и вторичной обмоток. Однофазный двухобмоточный трансформатор напряжения применяется в установках как однофазного, так и трехфазного тока. В последнем случае он включается на линейное напряжение. Один из выводов вторичной обмотки для обеспечения безопасности при обслуживании заземляется. Основными параметрами трансформаторов напряжения являются: номинальные напряжения обмоток, т.е. напряжения первичной и вторичной обмоток, указанные на щитке; номинальный коэффициент трансформации, т. е. отношение номинального первичного напряжения к номинальному вторичному погрешность по напряжению % угловая погрешность, т. е. угол между вектором первичного напряжения и повернутым на 180° вектором вторичного напряжения, выраженный в угловых градусах (минутах).
Рис.
1. Однофазный двухобмоточный трансформатор
напряжения: а - присоединение трансформатора
напряжения к трехфазной сети без нулевого
провода; б - расположение выводов (Л-X -
выводы ВН; а-х - выводы НН)
Особо следует сказать о трансформаторах напряжения высокого и сверхвысокого напряжения. Как было отмечено, трансформаторы напряжения передают очень малую мощность, поэтому практически в таких трансформаторах напряжения определяющим является вопрос обеспечения изоляции между первичной и вторичной цепями. Поэтому при напряжениях выше 500 кВ используются так называемые емкостные трансформаторы напряжения, состоящие из емкостного делителя напряжения (двух последовательно соединенных конденсаторов С1 и С2) и понижающего трансформатора, показанных на рис. 3. В современных РУ устанавливаются колонны конденсаторов высокочастотной связи для цепей автоматики и сигнализации. Поэтому, если использовать эту колонку связи CJ и добавить некоторый конденсатор отбора мощности С2, получим емкостной делитель. К конденсатору подключается трансформатор напряжения обычно на 12-15 кВ первичного напряжения. Для устойчивой работы в первичную цепь включается дополнительный реактор LR и высокочастотный заградитель 3. Таким образом, это устройство имеет существенно меньшую стоимость, чем трансформатор напряжения на полное первичное напряжение.
15. Обмотки машин переменного тока.
По конструкции катушек обмотки подразделяют на всыпные с мягкими катушками и обмотки с жесткими катушками или полукатушками. Мягкие катушки изготовляют из круглого изолированного провода. Для придания требуемой формы их предварительно наматывают на шаблоны, а затем укладывают в изолированные трапецеидальные пазы ; междуфазовые изоляционные прокладки устанавливают в процессе укладки обмотки. Затем катушки укрепляют в пазах с помощью клиньев или крышек, придают им окончательную форму (формируют лобовые части), осуществляют бандажирование обмотки и ее пропитку. Весь процесс изготовления всыпных обмоток можно полностью механизировать.
Жесткие катушки (полукатушки) изготовляют из прямоугольного изолированного провода. Окончательную форму им придают до укладки в пазы; одновременно на них накладывают корпусную и междуфазовую изоляцию. Всыпные обмотки имеют ряд преимуществ по сравнению с обмотками с жесткими катушками:
а) возможность полной механизации всего процесса изготовления обмотки;
б) упрощение технологий изготовления машины: намотку катушечных групп, а в ряде случаев и фаз обмотки выполняют без разрыва провода, что уменьшает число паек; укладку обмотки в пазы сердечника производят вне корпуса машины, что облегчает и удешевляет процесс обмотки и пропитки;
в) уменьшение длины вылета лобовых частей, что приводит к сокращению длины активной части машины и потерь энергии в обмотке;
г) применение в машине пазов трапецеидальной формы с уменьшенной шириной его шлица, что обеспечивает улучше ние использования зубцовой зоны, уменьшение магнитного сопротивления воздушного зазора, пульсации магнитного потока в нем и, как следствие, снижение величины намагничивающего тока и добавочных потерь.
Достоинством обмоток с жесткими катушками являются:
а) улучшение заполнения паза из-за применения проводов прямоугольного сечения;
б) повышение надежности обмотки из-за снижения вероятности появления производственных дефектов, так как в пазы укладывают готовые изолированные и проверенные катушки, которые подвергаются меньшим деформациям.
Поэтому всыпные обмотки получили широкое применение для асинхронных двигателей на напряжение до 1000 В и мощностью до 100 кВт. В двигателях мощностью свыше 100 кВт применение всыпных обмоток из круглого провода встречает значительные технологические трудности. Обмотки таких двигателей изготовляют в основном из жестких катушек, выполненных из прямоугольного провода.
По расположению катушек в пазах и размещению их лобовых частей различают однослойные, двухслойные (в том числе концентрические), одно-двухслойные обмотки.
Однослойные обмотки (рис. 3.18,а) наиболее пригодны для механизированной укладки, так как в этом случае обмотка должна быть концентрической и укладываться в пазы статора обеими сторонами катушки одновременно. Однако применение их приводит к увеличенному расходу обмоточного провода из-за значительной длины лобовых частей. Кроме того, в таких обмотках не представляется возможным выполнить укорочение шага, что приводит к ухудшению формы магнитного поля в воздушном зазоре, увеличению добавочных потерь, возникновению провалов в механической характеристике и повышению шума. Однако из-за своей простоты и дешевизны такие обмотки широко применяют в асинхронных двигателях небольшой мощности до 10 — 15 кВт.
16. Трехфазный асинхронный двигатель. Основные понятия и определения. Номинальные параметры. Скольжение. Допуски. Номинальные режимы работы (S-режимы). КПД, cosφ.
Неподвижная часть машины называется статор, подвижная – ротор. Сердечник статора набирается из листовой электротехнической стали и запрессовывается в станину. На рис. 2.1 показан сердечник статора в сборе. Станина (1) выполняется литой, из немагнитного материала. Чаще всего станину выполняют из чугуна или алюминия. На внутренней поверхности листов (2), из которых выполняется сердечник статора, имеются пазы, в которые закладывается трёхфазная обмотка (3). Обмотка статора выполняется в основном из изолированного медного провода круглого или прямоугольного сечения, реже – из алюминия. Обмотка статора состоит из трёх отдельных частей, называемых фазами. Начала фаз обозначаются буквами c1,c2,c3, концы – c4,c5,c6.
На щитке машины, закреплённом на станине, приводятся данные: Pн,Uн,Iн,nн, а также тип машины. Pн – это номинальная полезная мощность (на валу) Uн и Iн – номинальные значения линейного напряжения и тока для указанной схемы соединения. Например, 380/220, Y/∆, IнY/Iн∆. nн – номинальная частота вращения в об/мин.
Отличительный признак асинхронного двигателя состоит в том, что частота вращения 2 n ротора меньше синхронной частоты вращения 1 n магнитного поля статора.
Объясняется
это тем, что ЭДС в стержнях обмотки
ротора индуцируется только при неравенстве
частот вращения
.
Частота вращения поля статора относительно
ротора определяется частотой скольжения
.
Отставание ротора от вращающегося
поля статора характеризуется
относительной величиной s , называемой
скольжением:
Скольжение асинхронного двигателя
может изменяться в диапазоне от 0 до 1,
т.е. 0–100 %. Если s ≈ 0 , то это соответствует
режиму холостого хода, когда ротор
двигателя практически не испытывает
противодействующего момента, если s ≈
1 – режиму короткого замыкания, при
котором ротор двигателя неподвижен.
Скольжение зависит от механической
нагрузки на валу двигателя и с ее ростом
увеличивается. Скольжение, соответствующее
номинальной нагрузке двигателя,
называется номинальным скольжением.
Для асинхронных двигателей малой и
средней мощности номинальное скольжение
изменяется в пределах от 0,08 до 0,02, т.е.
8–2 %.
Мощность двигателя всегда зависит от режима работы и продолжительности включения. В соответствии с действующим стандартом существуют три основных номинальных режима работы электрических машин, различающиеся характером изменения нагрузки, и ряд дополнительных.
1)
Продолжительный
номинальный режим – когда при
неизменной номинальной нагрузке Pн
работа машины продолжается так долго,
что температура всех ее частей успевает
достигнуть установившихся значений
Условное обозначение режима S1 . Различают
продолжительный режим с неизменной
нагрузкой P = const (рис. 6.14, а) и продолжительный
режим с изменяющейся нагрузкой (рис.
6.14, б).
2) Кратковременный номинальный режим S 2 – когда периоды неизменной номинальной нагрузки чередуются с периодами включения двигателя (рис. 6.14, в)
3) Повторно-кратковременный номинальный режим S3 – когда кратковременные периоды номинальной нагрузки двигателя н t чередуются с периодами отключения двигателя (паузами), причем за период нагрузки превышение температуры всех частей не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы двигателя в повторно-кратковременном