- •1. Электрические машины. Общие понятия и определения. Сферы применения. Соотношение двигателей в мире.
- •2. Электрические машины постоянного тока. Генераторы.
- •3. Двигатель постоянного тока. Принцип действия. Режимы работы. Кпд. Моменты: номинальный, пусковой, электромагнитный, на валу
- •5. Коммутация в машинах постоянного тока. Коммутация в коллекторных машинах. Степени искрения. Защита обмотки якоря. Подавление радиопомех.
- •6. Пуск двигателя постоянного тока
- •8. Исполнительные двигатели постоянного тока. Система относительных единиц.
- •9. Передаточные функции и структурные схемы исполнительного двигателя постоянного тока при якорном управлении.
- •10. Исполнительные двигатели постоянного тока. Якорное управление.
- •11. Исполнительные двигатели постоянного тока. Полюсное управление.
- •12. Тахогенератор постоянного тока.
- •13. Электрические машины переменного тока. Основные понятия и определения.
- •14. Двухобмоточный однофазный трансформатор. Принцип действия. Схема замещения
- •15. Обмотки машин переменного тока.
- •17. Синхронные двигатели
- •18. Трехфазный асинхронный двигатель. Принцип действия. Схема замещения
- •20. Пуск асинхронных двигателей с фазным и короткозамкнутым ротором
- •21. Способы плавного регулирования скорости трехфазного асинхронного двигателя
- •22. Способы ступенчатого управления (регулирования) скоростью трехфазного асинхронного двигателя.
- •24. Векторное управление двигателем переменного тока
- •25. Эффективность частотного регулирования в системах водоснабжения, водоотведения, отопления и вентиляции.
- •28. Включение трехфазного асинхронного двигателя в однофазную сеть.
- •30. Асинхронный тахогенератор
- •32. Линейный режим работы поворотного трансформатора
- •33. Поворотный трансформатор-построитель
- •34. Сельсины. Индикаторный режим работы
- •35. Сельсины. Трансформаторный режим работы
- •36. Сельсины. Дифференциальный режим работы
- •37. Сельсин-двигатель. Магнесины.
- •38. Индукционные датчики перемещения. Вращающиеся трансформаторы, резольверы, индуктосины
- •40. Датчики перемещения. Одно- и двухканальная схема измерительного преобразователя.
- •41. Требования к датчикам. Выбор разрядности ацп.
- •42. Кодовые оптические датчики считывания. Инкрементальные оптические датчики.
- •43. Виды движения. Основные понятия и определения.
- •46. Требования совместимости элементов. Унификация и нормализация. Степени защиты.
- •48. Выбор типа и параметров исполнительного двигателя. Типовые режимы работы
- •50. Методы проверки двигателей на нагрев. Коэффициент использования.
32. Линейный режим работы поворотного трансформатора
33. Поворотный трансформатор-построитель
34. Сельсины. Индикаторный режим работы
Сельсинами называют индукционные машины, обеспечивающие синхронный и синфазный поворот или вращение двух или нескольких осей, механически не связанных между собой. Одна из таких машин механически соединена с ведущей осью и называется датчиком, а другая - с ведомой осью и называется приёмником.
Различают два основных режима работы сельсинов: индикаторный и трансформаторный.
При индикаторном режиме ротор сельсина-приемника соединяют непосредственно с ведомой осью. Его применяют при малом значении тормозного момента на ведомой оси, обычно в тех случаях, когда на оси укреплена хорошо уравновешенная стрелка индикатора (отсюда название — индикаторный).
В этом режиме на валу сельсина - приемника имеется незначительный момент сопротивления, поэтому для поворота ротора приемника вслед за поворотом ротора датчика требуется небольшой вращающий момент, который может быть получен от самого сельсина - приемника без дополнительных усилительных устройств.
Схема включения сельсинов для индикаторного режима имеет вид (рис. 5.11):
Рис. 5.11. Схема включения сельсинов при работе их в индикаторном режиме.
Пульсирующие
магнитные потоки, создаваемые обмотками
возбуждения датчика и приемника,
индуктируют в трех фазах обмоток
синхронизации ЭДС. Если между роторами
датчика и приемника имеется некоторый
угол рассогласования
,
то по обмоткам синхронизации будут
протекать токи, которые, взаимодействуя
с потоком возбуждения, создают в датчике
и приемнике синхронизирующие моменты.
Эти моменты имеют противоположные
направления и стремятся свести к нулю
угол рассогласования. Обычно ротор
датчика заторможен, поэтому его
синхронизирующий момент воспринимается
механизмом, поворачивающим ведущую ось
О1;
синхронизирующий же момент приемника
поворачивает его ротор в ту же сторону
и на тот же угол, на который поворачивается
ротор датчика.
Таким образом, средняя величина синхронизирующего момента пропорциональна синусу угла рассогласования. Для того, чтобы сельсины обладали свойством самосинхронизации в пределах одного оборота, их обычно выполняют двухполюсными так, что геометрический угол поворота ротора соответствует "электрическому" углу.
Из рис. 5.16а, следует, что синхронизирующий момент равен нулю при углах рассогласования =0 и =180, т. е. рассматриваемая система передачи угла на сельсинах имеет в пределах одного оборота две точки согласованного положения ротора датчика и приемника. Однако, в действительности согласованное положение соответствует =0, т.к. при =1800 имеет место неустойчивое равновесие: при малейшем отклонении ротора в ту или иную сторону от этой точки возникает синхронизирующий момент стремящийся ликвидировать угол рассогласования и сделать его равным нулю.
Рис. 5.16. Зависимости синхронизирующего момента от угла рассогласования в сельсинах с неявновыраженными (а) и явновыраженными (б) полюсами
Величина максимального синхронизирующего момента Mm зависит от произведения
F2m
sin
.
Так как
а
,
то момент
|
(5.2.27) |
где
A и B - постоянные;
UB - напряжение, подаваемое на обмотку возбуждения сельсинов.
Z2,r2 и x2 - суммарное, активное и индуктивное сопротивления последовательно включенных фаз датчика и приемника (для сельсинов с явно выраженными полюсами (рис. 5.16б) берут значения Z2 и x2 приведенные к поперечной оси сельсина).
