- •1. Электрические машины. Общие понятия и определения. Сферы применения. Соотношение двигателей в мире.
- •2. Электрические машины постоянного тока. Генераторы.
- •3. Двигатель постоянного тока. Принцип действия. Режимы работы. Кпд. Моменты: номинальный, пусковой, электромагнитный, на валу
- •5. Коммутация в машинах постоянного тока. Коммутация в коллекторных машинах. Степени искрения. Защита обмотки якоря. Подавление радиопомех.
- •6. Пуск двигателя постоянного тока
- •8. Исполнительные двигатели постоянного тока. Система относительных единиц.
- •9. Передаточные функции и структурные схемы исполнительного двигателя постоянного тока при якорном управлении.
- •10. Исполнительные двигатели постоянного тока. Якорное управление.
- •11. Исполнительные двигатели постоянного тока. Полюсное управление.
- •12. Тахогенератор постоянного тока.
- •13. Электрические машины переменного тока. Основные понятия и определения.
- •14. Двухобмоточный однофазный трансформатор. Принцип действия. Схема замещения
- •15. Обмотки машин переменного тока.
- •17. Синхронные двигатели
- •18. Трехфазный асинхронный двигатель. Принцип действия. Схема замещения
- •20. Пуск асинхронных двигателей с фазным и короткозамкнутым ротором
- •21. Способы плавного регулирования скорости трехфазного асинхронного двигателя
- •22. Способы ступенчатого управления (регулирования) скоростью трехфазного асинхронного двигателя.
- •24. Векторное управление двигателем переменного тока
- •25. Эффективность частотного регулирования в системах водоснабжения, водоотведения, отопления и вентиляции.
- •28. Включение трехфазного асинхронного двигателя в однофазную сеть.
- •30. Асинхронный тахогенератор
- •32. Линейный режим работы поворотного трансформатора
- •33. Поворотный трансформатор-построитель
- •34. Сельсины. Индикаторный режим работы
- •35. Сельсины. Трансформаторный режим работы
- •36. Сельсины. Дифференциальный режим работы
- •37. Сельсин-двигатель. Магнесины.
- •38. Индукционные датчики перемещения. Вращающиеся трансформаторы, резольверы, индуктосины
- •40. Датчики перемещения. Одно- и двухканальная схема измерительного преобразователя.
- •41. Требования к датчикам. Выбор разрядности ацп.
- •42. Кодовые оптические датчики считывания. Инкрементальные оптические датчики.
- •43. Виды движения. Основные понятия и определения.
- •46. Требования совместимости элементов. Унификация и нормализация. Степени защиты.
- •48. Выбор типа и параметров исполнительного двигателя. Типовые режимы работы
- •50. Методы проверки двигателей на нагрев. Коэффициент использования.
22. Способы ступенчатого управления (регулирования) скоростью трехфазного асинхронного двигателя.
Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.
Из выражения nо = 60f/р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения nо магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.
Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.
Рис. 7. Схемы переключения обмоток асинхронного двигателя: а - с одинарной звезды на двойную; б - с треугольника на двойную звезду
Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.
23. Скалярное управление асинхронным двигателем. Диапазон ослабления поля. Опрокидывающий момент. Преимущества и недостатки в сравнении с векторным управлением.
Скалярное частотное управление является основным видом управления, используемым в автоматизированном асинхронном электроприводе. В настоящее время, несмотря на конкуренцию с векторными способами управления, оно довольно широко распространено, т.к. позволяет решать многие технические задачи массового электропривода проще и эффективнее. Это относится в первую очередь к приводам с низкими требованиями по динамике. При скалярном способе управления можно управлять двумя и более двигателями, к тому же он не требует дополнительных датчиков (скорости, потока). Поэтому наиболее часто в частотно-регулируемых электроприводах используется скалярное управление.
Устройство содержит асинхронный двигатель, преобразователь частоты и напряжения и функциональный преобразователь, в котором реализуется зависимость амплитуды напряжения от частоты. В устройство входят датчики тока статорной обмотки двигателя, сигналы с выходов которых подаются на входы функционального преобразователя тока, где формируются выходные сигналы, пропорциональные действующему значению тока статора и активной составляющей этого тока. Положительная обратная связь по активной составляющей тока статора, которая корректирует одновременно сигнал канала напряжения и сигнал канала частоты и напряжения, обеспечивает увеличение потока. Отрицательная обратная связь по действующему значению тока статора корректирует эти же сигналы.
Схема работает удовлетворительно при номинальных нагрузках (ток статора и скольжение не превышают своих номинальных значений), когда участки электромеханических и механических характеристик линейны. При максимальных нагрузках (ток статора и скольжение больше своих номинальных значений) за счет функции токоограничения снижается перегрузочная способность двигателя. Схема сохраняет работоспособность, если за время перегрузки не срабатывают защиты от перегрева преобразователя или двигателя. Когда действуют продолжительные максимальные нагрузки, защита отключает преобразователь. Для ряда приводов это приводит к аварийной ситуации.
Данный алгоритм функции токоограничения - это основной недостаток. При таком алгоритме поток в двигателе, а следовательно, и жесткость механической характеристики значительно снижаются.
Сигнал отрицательной обратной связи по действующему значению тока статора поступает на инверсный вход второго сумматора, при этом уменьшается только амплитуда напряжения на статоре двигателя, частота этого напряжения остается постоянной. Жесткость характеристики снижается, уменьшается поток и момент двигателя, вызывая опрокидывание механической характеристики асинхронного двигателя. Токи статора и ротора резко возрастают, вызывая перегрев двигателя и преобразователя, что в итоге приводит к аварийной ситуации.
Работа положительной обратной связи по току со стороны второго блока при номинальной скорости асинхронного двигателя - второй недостаток схемы. Второй блок одновременно увеличивает выходные частоту и напряжение преобразователя частоты при росте нагрузки на валу двигателя. Если допустимые значения частоты и напряжения питания соответствуют номинальным значениям, то данный контур при номинальной скорости не оказывает никакого влияния на работу схемы.
Наиболее часто при росте частоты выше номинального значения напряжение на статоре оставляют неизменным и равным номинальному значению напряжения питания двигателя. В пределах номинальных нагрузок (ток статора и скольжение не превышают своих номинальных значений) скорость двигателя поддерживается при штатном режиме работы. При нагрузках выше номинальных (ток статора и скольжение больше своих номинальных значений) данный алгоритм вызывает опрокидывание механической характеристики асинхронного двигателя. Это возникает из-за смягчения механической характеристики, что приводит к увеличению тока статора, работе схемы токоограничения и дальнейшему снижению жесткости.
Существующие алгоритмы поддерживают постоянным поток в асинхронном двигателе и жесткость механической характеристики. При выходе на максимальное напряжение жесткость характеристики снижается, т.к. запас по частоте больше запаса по напряжению. Увеличение скольжения приводит к росту токов в обмотках статора и ротора и, соответственно, потерь.
Техническая задача предлагаемого устройства - обеспечение перегрузочной способности привода, снижение потерь в статоре и роторе двигателя, испытывающего большие нагрузки, за счет снижения скольжения и увеличения потока.
