Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по моделям.docx
Скачиваний:
14
Добавлен:
01.03.2025
Размер:
331.92 Кб
Скачать

8. Построение ф-ий спроса и предложения методом наименьших квадратов.

В качестве исходных данных для построения ф-ии спроса и предложения выступают данные n незав набл за спросом (предлож) и соотв ему цене.

Эти набл можно представить в виде вектор столбца Х и У. эл-ты столбца х выступ в кач-ве знач цены, фиксируемой в iом опыте. Вектор столбец у сост из компонент представл собой знач спроса (предлож), фиксируемых в каждом iом опыте.

Ф-и спр и предл м.б. как лин, так и нелин. В случ лин ф-и она им вид: ух=а+bx. Хар-ет семейства прямых, каждое из которых характеризуется конкретными значениями коэффициентов а и Ь, Наилучшей из всего множества прямых для рассматриваемой выборки является та прямая, которая на плоскости хОу расположена "ближе" всего, в определенном смысле, к опытным точкам. В качестве меры близости прямой и некоторой точки на плоскости можно выбрать расстояние между ними. При этом под расстоянием следует понимать модуль разности между опытным (наблюдаемым) значением результирующей величины и теоретическим.

В качестве критерия близости между прямой и множеством точек на плоскости целесообразно выбрать минимум суммы квадратов этих расстояний. Е=∑(yi-a-bxi)^2->min. Здесь считается, что yt и xi - известные статистические данные; а

и Ъ — неизвестные параметры (коэффициенты) функции регрессии. Поскольку функция Е непрерывна, выпукла и ограничена снизу нулем, то она имеет минимум. Изложенная идея минимизации суммы квадратов отклонений (на плоскости расстояний) опытных от теоретических значений объясняемой переменной положена в основу метода наименьших квадратов.

Если необходимо оценить коэфф-ты линейной ф-ии спроса, то применяют непосредственно метод наименьших квадратов p(x)=Co+C1(x). Если нелинейная ф-ия – используют линеаризацию. Самостоятельно применяют метод наим. кВ. для нелинейной ф-ии спроса, т.е. линеаризируют функцию зависящую .

9. Построение ф-ий спроса и предложения методом наименьших квадратов.

В качестве исходных данных для построения ф-ии спроса и предложения выступают данные n незав набл за спросом (предлож) и соотв ему цене.

Эти набл можно представить в виде вектор столбца Х и У. эл-ты столбца х выступ в кач-ве знач цены, фиксируемой в iом опыте. Вектор столбец у сост из компонент представл собой знач спроса (предлож), фиксируемых в каждом iом опыте.

Ф-и спр и предл м.б. как лин, так и нелин. В случ лин ф-и она им вид: ух=а+bx

Если необходимо оценить коэфф-ты линейной ф-ии спроса, то применяют непосредственно метод наименьших квадратов p(x)=Co+C1(x). Если нелинейная ф-ия – используют линеаризацию. Самостоятельно применяют метод наим. кВ. для нелинейной ф-ии спроса, т.е. линеаризируют функцию зависящую .