- •Абс и относ в-ны в эк анализе.
- •2. Суммарные, средние и предельные величины в экономич. Анализе.
- •3. Общая характеристика математических функций, используемых в экономике.
- •4 . Типы функций одной и нескольких переменных, используемых в эк. Мат. Моделях.
- •5. Погрешность аппроксимации функции.
- •8. Построение ф-ий спроса и предложения методом наименьших квадратов.
- •9. Построение ф-ий спроса и предложения методом наименьших квадратов.
- •10. Определение эластичности функции.
- •11. Свойства эл-ти.
- •12. Эластичость лин и квадратичной ф-й
- •15. Производственная ф-я 2х перем.
- •16. Типы производственных функций 2х переменных.
- •18.Неоклассическая мультипликативная производств. Ф-ция.
- •22. Изокванты мультипликатив. Производств.Ф-ции.
- •23. Изоклины мультипликативной производственной функции
- •24. Коэф.Эластич.Производ.Ф-ии
- •25.Опред-е масштаба и эфф-ти стр-ва с помощью производ.Ф-ции.
- •37.Анализ коэф.Корелляции и детерминации.
- •38.Дисперсионный анализ лин. Регрессии.
- •34. Мнк для лин ф-и регр
- •35. Мнк для степенной ф-и регрессии
- •36. Мнк для показат ф-и регрессии
- •46. Стандартная ошибка результирующей переменной.
- •42. Оценка значимости лин регр с пом коэф детерминации.
- •41. Оценка значимости лин регр с пом коэф корреляции.
- •26. Построение балансовой модели
- •27.Продуктивные модели Леонтьева.
- •28. Модель равновесных цен
- •29. Модель международной торговли (модель обмена)
- •30. Модель стабилизации цены на рынке одного товара (модель Эванса)
- •31. Модель предприятия.
- •43. Дисперсионный анализ.
43. Дисперсионный анализ.
Непосредственному определению коэф дет предшествует анализ дисперсии.
Основной целью дисперсионного анализа является исследование значимости различия между средними.
Центральное место в дисп.анализе занимает разложение общей суммы кв.отклонений результирующего показателя у от его сред.зн-я у (с чертой) на две части: объясненную(факторную) и остаточную(необъясн).
(общая сумма=объясн + ост)
Таким образом, условно все факторы, определяющие изменение результирующего показателя, разделены на две группы: изучаемый фактор х и прочие факторы. Если изучаемый фактор х не оказывает влияния, то линия регрессии параллельна оси Ох, т. е. уравнение регрессии будет иметь вид: ух = у=а. сумма факт=0
В этом случае влияние оказывают другие факторы, и, следовательно, вся дисперсия результативного признака обусловлена другими факторами.
Если другие факторы не оказывают влияние на результат у, то он связан с фактором х функционально, и сумма квадратов остатков будет равна нулю.
Тогда если ввести отнош суммы кв факторной к сумме кВ общей как коэф детерминации то он будет изменяться от 0 до 1. При чем если r=0 то связь отсутствует, если =1 то связь тесная функциональная.
r=∑(yxi-y-)^2/∑(yi-y-)^2=S2yфакт/S2yобщ. Через остаточную сумму: =1- S2yост/ S2yобщ
Замечание 1.
Можно показать что для лин ф-и регр сущ связь r=rxy2 т.е. квадрат коэф корр есть коэф детерминации.
Замечание 2. Коэф корр хар-т тесноту лин ф-ции регр, а детерм для любой.
В случае рассмотрения нелин ф-и регр находят коэф дет и зняю связь между коэ-ми вводят индекс корреляции. Rxy=r^1/2
Замечание 3. Между коэ кор, регрессии b и коэф дет для лин ф-ции регр сущ связь
