- •1.Множества. Операции над множествами.
- •2. Взаимно-однозначное соответствие. Счетные и несчетные множества.
- •4. Основные свойства бесконечно малых последовательностей. Связь между бмп и ббп.
- •(Связь бмп и ббп):
- •5.Предел последовательности.
- •6.Свойства сходящихся последовательностей.
- •1.Сход.Посл-ть имеет только один предел
- •2. Сход.Посл-ть явл ограниченной
- •3.Арифметические действия
- •Монотонные последовательности. Число е.
- •8. Предел функции по Гейне. Односторонние пределы (по Гейне).
- •9.Предел функции по Коши. Односторонние пределы (по Коши).
- •10. Основные теоремы о пределах функции.
- •11. Бесконечно малые функции. Сравнение бесконечно малых.
- •12. Эквивалентные бесконечно малые функции.
- •14.Непрерывность функции в точке.
- •15. Арифметические операции над непрерывными функциями. Непрерывность сложной и обратной функции.
- •16. Точки разрыва функции и их классификация.
- •17. Производная функции в точке, ее геометрический и физический смысл.
- •18. Дифференцируемость функции.
- •19.Правила дифференцирования.
- •20. Таблица основных производных. Логарифмическое дифференцирование.
- •21.Дифференциал функции.
- •22.Производные и дифференциалы высших порядков.
- •23. Производная функции, заданной параметрически. Производная вектор-функции.
- •24. Основные теоремы о дифференцируемых функциях.
- •25.Правило Лопиталя.
- •26. Формула Тейлора.
- •27. Условие монотонности функции. Достаточные условия локального экстремума.
- •28. Выпуклость графика функции и точки перегиба.
- •29. Асимптоты графика функции.
29. Асимптоты графика функции.
В некоторых случаях, когда график ф-ии имеет бесконечные ветви, оказывается, что при удалении точки вдоль ветви к бесконечности, она неограниченно стремится к некоторой прямой. Такие прямые называют асимптотами.
Вертикальные
асимптоты – прямая
называется вертикальной
асимптотой графика
ф-ии
в точке b
, если хотя бы один из разносторонних
пределов равен бесконечности.
Если ф-ия задана дробно-рациональным выражением, то вертикальная асимптота появляется в тех точках, когда знаменатель равен нулю, а числитель не равен нулю.
********************
Наклонная
асимптота
– прямая
наклонная асимптота ф-ии
,
если эта ф-ия представлена в виде
Необходимый и достаточный признак существования наклонной асимптоты:
Для существования наклонной асимптоты к графику ф-ии необходимо и достаточно существование конечных пределов:
Доказательство: Пусть:
Пусть:
Следовательно существует асимптота.
1.(C)ꞌ=0, C=const
|
9.(arcsinx)ꞌ=1/
|
2.(xα)ꞌ=αxα-1
|
10.(arccosx)ꞌ=-1/
|
3.(ax)ꞌ=axlna (ex)ꞌ=ex
|
11.(arctgx)ꞌ=1/1+x2
|
4.( (lnx)ꞌ=1/x
|
12.(arcctgx)ꞌ=-1/1+x2
|
5.(sinx)ꞌ=cos x
|
13.(1/x)ꞌ=-1/x2
|
6.(cosx)ꞌ=-sin x
|
14.(1/f(x))ꞌ=-f ꞌ(x)/(f(x))2
|
7.(tgx)ꞌ=1/cos2x
|
15.(
|
8.(ctgx)ꞌ=-1/sin2x
|
|

)ꞌ=1/xlna
)ꞌ=1/2