Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_matan_1_sem.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
184.31 Кб
Скачать

26. Формула Тейлора.

Теорема (Тейлора)

Пусть функция f(x) имеет в точке a и некоторой ее окрестности производные порядка n+1. Пусть x — любое значение аргумента из указанной окрестности, x≠ a. Тогда между точками x и a найдется такая точка , что справедлива следующая формула:

f(x)=f(a)+ -формула Тейлора.

27. Условие монотонности функции. Достаточные условия локального экстремума.

Если x2>x1, f(x2)>f(x1), то ф-ция монотонно возрастает

Если x2>x1, f(x2)<f(x1), то ф-ция монотонно убывает

Монотонность - постоянство

Необходимые признаки:1)если ф-ция f(x) всюду в интервале возрастает, то ее производная в этом интервале неотрицательна ( f `(x)>=0)

2)если ф-ция f(x) всюду в интервале убывает, то ее производная в этом интервале неположительная (f `(x)<=0)

3)если ф-ция f(x) всюду в интервале постоянна, то ее производная в этом интервале =0 (f `(x)=0)

Достаточные признаки монотонности: 1)если f `(x) в интервале положительна, то ф-ция f(x) возрастает в этом интервале.

2)если f`(x)<0, то ф-ция f(x) возрастает в этом интервале.

3)если f`(x)=0, то ф-ция f(x)=const на интервале.

x1<a<x2, x2-x1>0, x2>x1

1. если f `(a)>0, то f(x2)>f(x1)

2. если f `(a)<0, то f(x2)<f(x1)

3. если f `(a)=0, то f(x2)=f(x1)

Понятие локального экстремума, необходимое условие локального экстремума

Опр: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность 0-, х0+), для всех точек х которой выполняется неравенство f(х)f0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)f0).

Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Д ок-во: Проведем его для случая максимума в точке х0. Пусть 0-, х0+) - та окрестность, для точек которой выполняется неравенство

З десь возможно как 1 и 2 варианты, но | ∆х| <δ

П ри ∆х>0, будет ∆y:∆x ≤0, поэтому

П ри ∆х<0, будет ∆y:∆x ≥0, поэтому

По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

28. Выпуклость графика функции и точки перегиба.

Линия называется выпуклой, если она пересекается с любой своей секущей не более чем в 2х точках.

Линия наз-ся вогнутой, если она целиком лежит по 1 сторону от касательной, проведенной в любой ее точке.

Точка перегиба - точка, отделяющая выпуклый участок дуги от вогнутого.

Необходимый признак выпуклости и вогнутости: если линия на интервале выпуклая, то ее 2я производная <=0; если линия на интервале вогнутая, то ее f``(x)>=0

Достаточный признак: если f``(x) всюду в интервале “-”, то линия в интервале выпуклая; если f``(x)>0, то линия вогнутая

Признаки точки перегиба: чтобы X0 была т. перегиба, <=> чтобы у`` в этой точке = 0 и меняла знак при переходе х через х0.

Направление выпуклости ф-ии (опр,признаки)

Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции.

y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)f(x0)+ f‘(x0)(x-x0)  x,x0(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой.

Точки перегиба графика ф-ии(опр,признаки)

Опр. Точки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум.

Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]